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Abstract—A new method for solving the elasticity problem for thick and thin shells is proposed.
The method is based on the concept of reference surfaces inside the shell. According to this
method, N reference surfaces are introduced in the body of the shell so that they are parallel to the
midsurface and located at the Chebyshev polynomial nodes, which permits taking the displacement
vectors u1,u2, . . . ,uN of these surfaces for the desired functions. This choice of the desired functions
allows one to represent the resolving equations of the proposed theory of higher-order shells in
a sufficiently concise form and obtain deformation relations which permit describing the shell
displacements as motions of a rigid body.
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1. INTRODUCTION

In the traditional construction of shell theory, displacements are expanded in power series in the
transverse coordinate θ3 measured along the outer normal to the medium surface. For an approximate
representation of the displacement field, one can use finite segments of the power series, because the
main goal in the theory of elastic shells is to obtain approximate solutions of three-dimensional elasticity
problems. The idea of this approach goes back to Cauchy [1]. But the seeming advantage of this theory is
lost in static problems for thick elastic shells, where one has to retain very many terms of the expansion
to obtain reasonable results.

In a more efficient approach, reference surfaces Ω1, Ω2, . . . , ΩN parallel to the medium surface are
introduced in the shell body so as to use the displacement vectors of these surfaces as the unknown
functions [2, 3]. This choice of the unknown functions with the subsequent use of Lagrange polynomials
of degree N − 1 in the spatial approximations to the displacements allows one to represent the resolving
equations of the proposed theory of higher-order shells in a sufficiently concise form and construct
deformation relations whose exactly describe the shell displacements as motions of a rigid body in a
system of curvilinear surface coordinates. But no proof of this fundamental statement has been given.
We also note that the idea of the method of reference surfaces goes back to [4–9], where various versions
of geometrically linear and nonlinear shell theories were constructed by using the shell face surfaces Ω−

and Ω+ as the reference surfaces.
The theory of higher-order shells [2, 3] is based on the use of equidistant reference surfaces, and

the face surfaces are also chosen as references surfaces. This hinders the application of this theory to
thick shells. The point is that, because of the Runge phenomenon, the proposed spatial polynomial
interpolation of the displacement vector with the use of Lagrange polynomials of higher degrees can
lead to significant oscillations of the polynomial approximations in the boundary effect region. This phe-
nomenon was discovered in [10] when studying the polynomial interpolation error in the approximation
of several functions on a uniform grid. The interpolation error can tend to infinity as the polynomial
degree increases. In numerical analysis, this effect is usually suppressed by taking the roots of the
Chebyshev polynomial [11] for the interpolation nodes, which allows significantly improving the behavior
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Fig. 1.

of higher-degree polynomial approximations, for which the interpolation error tends to zero as N → ∞.
This permits determining the solution of three-dimensional static problems for thick shells with any
prescribed accuracy for sufficiently many reference surfaces.

2. SHELL KINEMATICS
We consider a shell of constant thickness h. We refer the midsurface Ω to curvilinear orthogonal

coordinates θ1, θ2 counted along the principal curvature lines, while the coordinate θ3 is counted in the
transverse direction. The basis vectors of the shell medium surface have the form

aα = r,α = Aαeα, a3 = e3, (2.1)

where r = r(θ1, θ2) is the position vector of the medium surface, the Aα(θ1, θ2) are the coefficients of the
first quadratic form, the eα(θ1, θ2) are the unit tangent vectors to the coordinate lines θα, and e3(θ1, θ2) is
the unit outward normal vector to the medium surface. Note that the convention concerning summation
over repeated indices is not used in the present paper.

Let R = r + θ3e3 be the shell position vector; then the basis vectors in the shell body can be
represented as

gα = R,α = Aαcαeα, g3 = R,3 = e3, (2.2)

where the cα = 1 + kαθ3 are the components of the geometric shear tensor and the kα are the principal
curvatures.

By RI = r + θI
3e3 we denote the position vectors of the reference surfaces ΩI which lie inside the

interval (−h/2, h/2) at the nodes of the Chebyshev polynomial of degree N , where θI
3 are the transverse

coordinates of the surfaces ΩI defined according to [11] by the formula

θI
3 = − h

2
cos

(
π

2I − 1
2N

)
. (2.3)

Then the basis vectors of the reference surfaces shown in Fig. 1 have the form

gI
α = RI

,α = AαcI
αeα, gI

3 = e3, (2.4)

where the cI
α = 1 + kαθI

3 are the components of the geometric shear tensor on the surfaces ΩI .
The basis vectors in the shell body in a strained state are determined by the formulas

ḡi = R̄,i = gi + u,i, (2.5)

where R̄ = R + u is the position vector of the deformed shell and u is the displacement vector.
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The basis vectors of the reference surfaces ΩI in the strained state can be represented as

ḡI
α = R̄I

,α = gI
α + uI

,α, ḡI
3 = ḡ3(θI

3) = e3 + βI , (2.6)

uI = u(θI
3), βI = u,3(θI

3), (2.7)

where the R̄I = RI + uI are the position vectors of the surfaces ΩI in the strained state, the uI(θ1, θ2)
are the displacement vectors of the surfaces ΩI , and the βI(θ1, θ2) are the values of the derivative of
the three-dimensional displacement vector with respect to the coordinate θ3 on the surfaces ΩI . From
now on, the indices I, J , K indicate that a certain variable pertains to a reference surface and take the
values 1, 2, . . . , N , the Greek indices are α, β = 1, 2, and the Latin indices are i, j, k,m = 1, 2, 3.

3. DEFORMATION RELATIONS
In the system of curvilinear orthogonal coordinates θi, the strain tensor can be written as [12, 13]

2εij =
1

AiAjcicj
(ḡi · ḡj − gi · gj), (3.1)

where A3 = 1 and c1 = 1. The values of the strain tensor components on the reference surfaces ΩI have
the form

2εI
ij = 2εij(θI

3) =
1

AiAjc
I
i c

I
j

(ḡI
i · ḡI

j − gI
i · gI

j ). (3.2)

By introducing the basis vectors (2.4) and (2.6) into the deformation relations (3.2) of 3D elasticity
and by omitting the nonlinear terms, we obtain

2εI
αβ =

1
AαcI

α

uI
,α · eβ +

1
AβcI

β

uI
,β · eα,

2εI
α3 = βI · eα +

1
AαcI

α

uI
,α · e3, εI

33 = βI · e3.

(3.3)

Further, we represent the vectors uI and βI in the orthonormal basis ei by the formulas

uI =
∑

i

uI
i ei, (3.4)

βI =
∑

i

βI
i ei. (3.5)

From expansion (3.4) with the formulas of differentiation of the basis vectors ei with respect to the
curvilinear orthogonal coordinates [14]

1
Aα

eα,α = −Bαeβ − kαe3,
1

Aα
eβ,α = Bαeα,

1
Aα

e3,α = kαeα, Bα =
1

AαAβ
Aα,β (β �= α)

(3.6)

taken into account, we obtain
1

Aα
uI

,α =
∑

i

λI
iαei, (3.7)

λI
αα =

1
Aα

uI
α,α + BαuI

β + kαuI
3, λI

βα = uI
β,α − BαuI

α (β �= α), λI
3α =

1
Aα

uI
3,α − kαuI

α. (3.8)

By substituting the expansions (3.5) and (3.7) into formulas (3.3), we obtain the scalar form of the
linearized deformation relations

2εI
αβ =

1
cI
β

λI
αβ +

1
cI
α

λI
βα, 2εI

α3 = βI
α +

1
cI
α

λI
3α, εI

33 = ϑI
3. (3.9)
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4. SPATIAL APPROXIMATIONS TO DISPLACEMENTS AND STRAINS
Note that no assumptions about the character of the displacement and strain distribution over the

shell thickness have been made so far. We assume that the displacements are distributed across the
shell thickness according to the law [2]

ui =
∑

I

LIuI
i , (4.1)

where the LI(θ3) are the Lagrange polynomials of degree N − 1 defined by the formula

LI =
∏
J �=I

θ3 − θJ
3

θI
3 − θJ

3

. (4.2)

In this case, LI(θJ
3 ) = 1 if J = I and LI(θJ

3 ) = 0 if J �= I.
It follows from relations (2.7), (3.5), (4.1), and (4.2) that

βI
i =

∑
J

MJ(θI
3)u

J
i , (4.3)

where the M I = LI
,3 are polynomials of degree N − 2; their values on the reference surfaces ΩI are

determined by the formulas

MJ(θI
3) =

1
θJ
3 − θI

3

∏
K �=I,J

θI
3 − θK

3

θJ
3 − θK

3

(J �= I),

M I(θI
3) = −

∑
J �=I

MJ(θI
3).

(4.4)

Thus, the determining functions βI
i of the proposed shell theory are represented as a linear combination

of displacements uJ
i of the reference surfaces.

The next step is to choose the strain distribution law across the shell thickness. It is obvious that the
strain distribution in the transverse direction must be consistent with the displacement distribution (4.1);
i.e., we have

εij =
∑

I

LIεI
ij . (4.5)

Theorem. Deformation relations (3.3), (4.5) exactly represent the shell displacement as mo-
tions of a rigid body in the system of curvilinear spatial coordinates.

Proof. The displacement of the reference surfaces ΩI as motions of a rigid body can be represented
as [15, 16]

(uI)Rigid = Δ + Φ× RI , (4.6)

Δ =
∑

i

Δiei, Φ =
∑

i

Φiei, (4.7)

where Δ is the shell translational motion vector and Φ is the rotation vector. According to [14], we have

Δ,α = 0, Φ,α = 0. (4.8)

It follows from (4.6) with (2.1), (3.6), and (4.8) taken into account that

(uI
,α)Rigid = AαcI

αΦ × eα. (4.9)

By taking into account the identities∑
J

MJ(θ3) = 0,
∑
J

θJ
3 MJ(θ3) = 1 (4.10)
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which, in turn, follow from the obvious identities∑
J

LJ(θ3) = 1,
∑
J

θJ
3 LJ(θ3) = θ3 (4.11)

and by considering (2.7), (4.1), and (4.6), we obtain

(βI)Rigid =
∑
J

MJ(θI
3)(u

J)Rigid = Φ× e3. (4.12)

By introducing (4.9) and (4.12) into the deformation relations (3.3), we arrive at

2(εI
ij)

Rigid =
∑
J

MJ(θI
3)(u

J )Rigid = Φ × e3, (4.13)

as required.

5. TOTAL POTENTIAL ENERGY

We substitute the deformations (4.5) into the expression for the total potential energy of the elastic
body [17], introduce the resultant stresses [2]

HI
ij =

h/2∫
−h/2

σijL
Ic1c2 dθ3, (5.1)

and obtain

Π =
∫∫
Ω

[
1
2

∑
I

∑
i,j

HI
ijε

I
ij −

∑
i

(c+
1 c+

2 p+
i u+

i − c−1 c−2 p−i u−
i )

]
A1A2 dθ1 dθ2 − WΣ, (5.2)

where p−i and p+
i are surface loads acting on the shell outer and inner surfaces Ω− and Ω+,

u−
i = ui(−h/2) and u+

i = ui(h/2) are the displacements of the surfaces Ω− and Ω+, c−α = 1 − kαh/2
and c+

α = 1 + kαh/2 are components of the geometric shear tensor on the surfaces Ω− and Ω+, and WΣ

is the work of the external loads acing on the shell lateral surface Σ.
We restrict our consideration to the case of linearly elastic materials obeying the generalized Hooke

law

σij =
∑
k,m

Cijkmεkm, (5.3)

where Cijkm is the tensor of elastic moduli.
We substitute the stresses (5.3) into (5.1), take into account the strain distribution in the transverse

direction, and obtain the formula for calculating the resultant stresses,

HI
ij =

∑
J

∑
k,m

DIJ
ijkmεJ

km, (5.4)

DIJ
ijkm = Cijkm

h/2∫
−h/2

LILJc1c2 dθ3. (5.5)

6. NUMERICAL RESULTS
As an example, consider the bending of a hinged short cylindrical shell of dimension L/R = 4 loaded

on the inner surface Ω− by the sinusoidally distributed load

p−3 = −p0 sin
πθ1

L
cos(4θ2), (6.1)
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Table 1

N U3(0) S11(0.5) S22(0.5) S12(−0.5) S13(0) S23(0) S33(−0.5)

6 7.272 0.914 4.290 −1.597 1.514 −2.128 −1.145
7 7.483 1.167 5.042 −1.741 1.496 −1.987 −1.069

9 7.501 1.287 5.141 −1.759 1.503 −2.073 −1.020

11 7.503 1.324 5.159 −1.761 1.504 −2.052 −1.005
13 7.503 1.332 5.163 −1.761 1.504 −2.056 −1.001

[18] 7.503 1.332 5.163 −1.761 1.504 −2.056 −1.000

Table 2

N U3(0) S11(0.5) S22(0.5) S12(−0.5) S13(0) S23(0) S33(−0.5)

6 7.249 0.937 4.413 −1.583 1.508 −2.125 −1.139

7 7.466 1.202 5.065 −1.730 1.496 −1.983 −1.067
9 7.498 1.354 5.166 −1.756 1.498 −2.065 −1.025

11 7.509 1.439 5.234 −1.764 1.511 −2.068 −1.018

13 7.531 1.520 5.324 −1.773 1.501 −2.041 −1.026

[18] 7.503 1.332 5.163 −1.761 1.504 −2.056 −1.000

where L is the shell length, R is the medium surface radius, and θ1, θ2 are the meridional and
circular coordinates of the shell. The shell is manufactured of a composite material with the following
characteristics [18]: EL = 25ET, GLT = 0.5ET, GTT = 0.2ET, ET = 106, and νLT = νTT = 0.25.
The subscripts ‘L’ and ‘T’ correspond to the reinforcement direction and the transverse direction. The
reinforcing filaments lie in the circular direction.

To satisfy the boundary conditions, we assume that

uI
1 = uI

10 cos
πθ1

L
cos(4θ2), uI

2 = uI
20 sin

πθ1

L
sin(4θ2), uI

3 = uI
30 sin

πθ1

L
cos(4θ2). (6.2)

We substitute the displacements (6.2) into the formula for the total potential energy (5.2), take into
account relations (3.8), (3.9), (4.3), (5.4), and WΣ = 0, and obtain

Π = Π(uI
i0). (6.3)

Further, we apply the principle of minimum of the total potential energy and obtain a system of algebraic
equations of order N ,

∂Π
∂uI

i0

= 0. (6.4)

The above-described algorithm was implemented in the programming environment MATLAB using
the package ToolBox Symbolic Math, which allows one to perform symbolic calculations. As a result, we
obtain an analytic solution of the problem on the basis of the considered theory of higher-order shells.
To compare the results with the analytic solution of the three-dimensional elasticity problem [18], we
introduce the three-dimensional variables

S11 =
100h2σ11(L/2, 0, z)

p0R2
, S22 =

10h2σ22(L/2, 0, z)
p0R2

, S12 =
100h2σ12(0, π/8, z)

p0R2
,

S13 =
100hσ13(0, 0, z)

p0R
, S23 =

10hσ23(L/2, π/8, z)
p0R

, S33 =
σ33(L/2, 0, z)

p0
,

U3 =
10ELh3u3(L/2, 0, z)

p0R4
, z =

θ3

h
.

(6.5)

The data in Table 1, which were obtained by using the reference surfaces at the nodes of the
Chebyshev polynomial, and the data in Table 2, which were obtained by using the equidistant reference
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Fig. 2.

Fig. 3.

surfaces [3], show that, for a sufficiently large N , one can obtain a good agreement with the analytic
solution of the elasticity problem [18] even for a thick shell with R/h = 2. Note that the approach in [3]
leads to rather good results for N = 9; the choice of a greater number of reference surfaces does not
improve the results of calculations, because there is no uniform convergence to the exact solution of
the problem. The distribution of dimensionless stresses Sij over the shell thickness, which is shown in
Figs. 2–4 in the case of 11 reference surfaces for shells with geometric parameters R/h = 2, 4, 10, 100,
also testifies that the proposed method for solving static problems for thick and thin shells in the 3D
statement is highly promising. The solid curves were obtained by using this approach, and the small
circles present the results obtained in [18]. We can see that the boundary conditions on the shell face
surfaces for the transverse components of the stress tensor are satisfied with a sufficiently high accuracy.

Figures 5–7 additionally show the logarithmic error δi = lg |S3D
i3 − Si3| in the boundary conditions for

these stresses on the inner surface (curves with small circles) and the outer surface (curves with small
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Fig. 4.

Fig. 5.

squares) for various values of the parameter N . Figures 5 a, 6 a, 7 a illustrate the results of solution of the
problem by the proposed method, Figs. 5 b, 6 b, 7 b show the results obtained in [3]. As was already noted,
the calculations based on the use of equidistant surfaces [3] do not ensure the monotone convergence of
the solution and give an inadequate description of the shell stress state in the boundary effect region for
interpolation polynomials of high degree.

7. CONCLUSION

A new method for solving 3D elasticity problems for thick and thin shells is proposed. According to
this method, several reference surfaces are introduced inside the shell at the nodes of the Chebyshev
polynomials so as to take the displacement vectors of these surfaces for the unknown functions. It is
shown that the solutions of three-dimensional static problems for elastic shells can be found with any
prescribed accuracy for sufficiently many reference surfaces.
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Fig. 6.

Fig. 7.
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