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INVESTIGATION OF LOCALLY LOADED MULTILAYER
SHELLS BY A MIXED FINITE-ELEMENT METHOD
2. GEOMETRICALLY NONLINEAR STATEMENT
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Based on mixed finite-element approximations, a numerical algorithm is developed for solving linear static
problems of prestressed multilayer composite shells subjected to large displacements and arbitrarily large ro-
tations. As the sought-for functions, six displacements and eleven strains of the shell faces are chosen, which
allows us to use nonlinear deformation relationships exactly representing arbitrarily large displacements of
the shell as a vigid body. The stiffness matrix of a shell element has a proper rank and is calculated based on ex-
act analytical integration. The bilinear element developed does not allow false rigid displacements and is not
subjected to the membrane, shear, or Poisson locking phenomenon. The results of solving the well-known test
problem on a nonsymmetrically fixed circular arch subjected to a concentrated load and the problem on a lo-
cally loaded toroidal multilayer rubber-cord shell are presented.

Introduction

In [1], an algorithm for the numerical solution of linear static problems of prestressed multilayer anisotropic
Timoshenko-type shells with regard for transverse compression was constructed. The algorithm was based on a mixed TMS4
element having a number of properties useful in calculating shells subjected to loads with a high degree of localization. Since,
in [1], “pure” deformation relations were used, the stiffhess matrix of the shell element had six nonzero eigenvalues, which was
necessary for a precise representation of small displacements of the element as a rigid body. As a result, the element did not ad-
. mit false rigid displacements (mechanisms) and was not subjected to the membrane or shear locking [2, 3].

In this study, a more general algorithm for the numerical solution of geometrically nonlinear static problems of a pre-
stressed multilayer anisotropic Timoshenko-type shell based on a mixed finite-element model (FEM) is elaborated. As a result
of using nonlinear deformation relations precisely representing arbitrary large displacements of the shell as a rigid body, the
stiffness matrix of the bilinear TMS4n element constructed has a proper rank. Therefore, this element, similar to its linear ana-
log TMS4, does not admit false rigid displacements and is not subjected to the membrane, shear, or Poisson locking. The latter
situation arises when the transverse compression is taken into account in the case of a predominant flexural stress state. This ef-
fect becomes more pronounced in solving problems in the geometrically nonlinear statement [4-6].

'For Report 1 see [1].
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The Hu—~Washizu Functional

Let us supplement the Hu-Washizu functional of the geometrically nonlinear elastic theory [7] with independent ap-

proximations of displacements and strains (see Eqs. (1) and (2) in [1]). Assuming that the metrics of the shell faces S are
equivalent to the metric of the reference surface S, we come to a formula for the variation of the Hu—Washizu functional for a
prestressed multilayer anisotropic shell subjected to large displacements and arbitrarily large rotations:

S |as<i

01
&1=_H [ = Z(Dwﬁ]EBj+DwB]E )~ Dw33E33:l8Ew

+ 01 11 + +
+Z [Hai _Bz (Douﬁj EBJ DazB]Eﬁj )= Da133E33 ] SEai

as<i

+[H33 - " (D33pEpy +D;3B +J )-D3333E33 } dE33
B<j

+ D [(Eqi —€qi —Nai )0Hg; +(Eqi —en; —Moi WH o —Hg;8eq; —Hyideg;

as<i

(L +Hy; YoM —(Lyy +Hg; YoM g 1+ (B33 —e33 —M33 )8H33 —Hz3 8e33

— (L33 +H33)8n33 +2 (pf & —p; 8v; )} 414, doyday
i
~§ (Hyy8vy +HY,8vy + Hydv + Hydv] +Hypdvs +H Y v )ds. M
r
The designations used hereinafter correspond to those utilized in [1]: eé,- , e33 andn ii ,N33 are the linear and nonlinear compo-

nents of the Green—Lagrange strain tensor (see Egs. (4) in [1]) and the index variables are i, j,/,m=1, 2,3 and ,B,y=1,2

However, in this case, contrary to [1], the resultants of stresses have a different mechanical meaning: Hx; and H; are the re-

sultants of the Piola—Kirchhoff symmetric stress tensor and Lﬁi and Ls3 are the resultants of the Cauchy tensor of initial

stresses, which are determined by the formulas
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where N* (o3 ) are symmetric shape functions [1].

The components of the Piola-Kirchhoff stress tensor may be calculated by the complete relationships of the general-
ized Hooke’s law
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where b;];'zl are the stiffnesses of a kth layer of the shell. However, to calculate shells of incompressible or nearly incompress-

ible materials with the Poisson ratios of the layers close to 0.5 [8] and also to exclude the Poisson locking [6], we must assume

approximately that bga)33 = 0. This means that the underlined terms in the formula for the variation of Hu-Washizu functional

(1) can be omitted [1], since

+
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15,

We should note that functional (1) generalizes the respective Hu~Washizu functionals of multilayer shells given in {1, 9, 10].

Numerical Solution Algorithm for Geometrically Nonlinear Static
Problems of Multilayer Anisotropic Shells

Let us consider the problem of local loading of a prestressed multilayer anisotropic shell in the geometrically nonlin-
ear statement. It can be proved [9, 10] that the nonlinear deformation relations used precisely represent arbitrary large displace-
ments of the shell as a rigid body. This is of principal importance in calculating shells with a high degree of localization of a
load, including shells subjected to concentrated actions.

Let us present the variation of Hu—-Washizu functional (1) in the matrix form
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where &; and &, are the local coordinates of a shell element, A(§;, &, ) is the function describing the metric of the element, vis

the displacement vector, vr is the displacement vector of the boundary contour I el ofthe element, E, e, and A are vectors char-

acterizing the deformation relations, H is the resultant vector of Piola—Kirchhoff stresses, L is the resultant vector of initial
Cauchy stresses, ﬁr is the resultant vector of loads acting on the boundary I ¢l of the element, Pis the vector of surface loads,

and Dis an asymmetric 11x 11 matrix of elastic coefficients, whose elements are determined according to [1].
Since the vectors v, E, and Hin functional (2) are independent functional variables, independent approximations must
be used for them on the element considered. For the displacements, we use the standard bilinear approximation

v=ZN,v,, 3)

where N, (;,&; ) are linear shape functions and v, =[vj, v/ vy, v V3, v3+r]T are the vectors of nodal displacements

(r=i:71) For the strains and resulting stresses, according to the method of double approximation [11-13] generalized to the

case of transverse compression, we have even simpler formulas:
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where E® is the vector characterizing homogeneous deformation shapes, E®! E'°, and E!! are the vectors characterizing

higher deformation shapes, QOO is an 11x 11unit matrix, Q01 and Q10 are 11x Smatrices, and Q11 is an 11x 1 matrix, all intro-

duced in [1] for a more compact representation of the resolving matrix equations. The meaning of the vectors H'"? and L2 is
similar to that of E''2. Hereinafter, 5, , =0, 1.

Introducing displacements (3), strains (4a), and resulting stresses (4b) into Eq. (2) and using the standard variational
procedure, we obtain the following nonlinear equations of a mixed FEM model:
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where u = [vT vV, Vo Y, ] is the vector of nodal displacements of the shell element, F is the vector of nodal loads, B2 are

11 x 24 deformation matrices corresponding to the linear components of the strain tensor, R'"? are three-dimensional 11 x 24
x 24 deformation arrays corresponding to the nonlinear components of the strain tensor. In this case, R’z u are 11 x 24 matrices
whose elements are calculated from the formulas

RT2u) 0 =Y R2u; (p=11%q,s=1,24)
5

Excluding the vectors E"2 and H'2 from Egs. (5) and taking into account the relation
D2 = Q' (errz )T DQ'™ (Q"l"z )T ,
we obtain the resolving matrix equation of equilibrium of the shell element
G(u)=F, (6)
where

G(u)= Z 3™ +2R"2w)T D72 (BT + R u)u+ 2(R2u) T Q212 7.

A 2
According to [10], from Egs. (5), we can easily derive the relations

(M
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Fig.1. Scheme of a circular arch.

TABLE 1. Displacements ¥; = (v; +v; )/ 2of a Circular Arch at the Force Application Point

TMS4n
Force, p =l Equations (8) Equations (9) I\iltl:rr;zeornc;f
-V -3 -V -v3 -V -3
2 6.75 8.61 6.84 8.64 6.59 8.44 10
4 21.53 25.70 21.73 25.82 21.17 25.24 16
6 43.11 58.21 43.35 58.60 42.86 57.74 25
8 56.01 93.63 56.40 94.76 55.96 93.74 40

which mean that only seven higher approximation forms of strains (for example, £ 1—101, E 1+101 ,E 2_2]0, E ;210, E 1_301, E ;'301, and

E 2‘310) among the eleven ones introduced according to Egs. (4a) are independent. Relations (7) ensure the necessary number of

degrees of freedoms needed for a precise representation of large displacements of the shell element as a rigid body. It should be
noted that the stiffness matrix of the element is calculated based on precise analytical integration. As a result, we managed to
construct a universal and very efficient element TMS4n, which does not admit false displacements (mechanisms) and is not
subjected to the Poisson locking.

Equation (6) is nonlinear and can be solved by the Newton—Raphson method

-1
1] _ ] +[5_G (ul?] )} [F-G(™ ),
Ou
where n=0. 1, .... The iterations are continued until the inequality

ot gty < g oty

is fulfilled, where Uis the global vector of nodal displacements, ||, ||is the Euclidean norm in the space of displacements, and &
is the calculation accuracy specified a priori. .

The nonlinear TMS4n element served as the basis for the TIRANA (Tire Analysis) software package intended for use
in tire industry in designing resin-cord composites, in particular, pneumatic tires. The results of test calculations show a high
accuracy and efficiency of the TMS4n element. '
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TABLE 2. Deflection of the Tire at the Center of the Loading Area

Loading cases I I 11 v [16]
c 0 90/3 240/3 90
d 90 90/2 0 —q0/2
¥ (0, 0), mm 302 28.5 17.8 16.8 18.0
p=0 ¢=0
a b

Fig. 2. Deformed profiles of a 175/70R13 tire subjected to internal pressure (—) and to an ad-
ditional local load in the linear (—@—) and nonlinear (—A—) statements: loading case I (a) and
loading case III (b).

Numerical Results and Discussion

As a first example, we will consider a circular arch under the action of a concentrated force P =12PR? / Ebh3 atits top
(Fig. 1). Let the left-hand end of the arch be hinge-supported and the right-hand one fixed. The arch has the following
mechanogeometrical characteristics [7]: E =2- 108 ,v=0,R=100,b=6, =1, and y=215°. This problem has attracted the at-
tention of many researches from the viewpoint of studying the asymmetric transient buckling of the arch subjected to large dis-
placements and large rotations. However, this problem is not considered here, since we were interested in the ability of the

TMS4n element to adequately describe large displacements and large rotations of the arch without invoking the incremental ap-
proach [15].

The solution results of the problem were obtained for two cases of hinge support of the left-hand edge:

vy =v3 =0 (8)
v1+ =v; =0 ©)

and are shown in Table 1. For comparison, we have also presented there the results of calculation [14] with the use of the FEM
in the form of the method of displacements based on the geometrically nonlinear Timoshenko-type shell theory, without ac-
count of transverse compression but with regard for transverse normal stresses. It is seen that these data agree well with one an-
other. We should note that the results of this study were obtained without the use of the incremental approach and the number of
iterations necessary for reaching the given accuracy ¢ = 1075 is indicated in Table 1. Additionally, Fig. 1 shows four deformed
configurations of the arch before its transient buckling at P=914 [14].
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Fig. 3. Displacements v; of the inner surface of a 175/70R13 tire vs. the meridional coordinate

t for o =nm/20: v (a), v; (b), and v3 (c).

Let us consider the geometrically nonlinear problem of local loading of a 175/70R 13 radial car tire (see Fig. 3 in [1]).
First, the tire was subjected to an internal pressure of p=0.2 MPa. Then, for the prestressed rubber-cord shell subjected to the
conservative load

a® A a A? (10)

in the direction perpendicular to the rotation axis [ 1], we solved the geometrically nonlinear problem. As in [1], four types of lo-
cal loads modeling the contact pressure and distributed inside an ellipse with semiaxes a= 50 mm and A = 7/10rad were consid-
ered, where ¢ and ¢ are the meridional and circumferential coordinates of the tire. The values of the coefficients ¢ and d of Eq.
(10) are given in Table 2 (g, = 0.333 MPa). It should be noted that the resulting compressive force was the same for all loads
and was equal to 3 kN. In our numerical calculations, we assumed that the edges of the tire with the coordinates ¢ =+160 mm
were rigidly fixed.

The calculation results for the deformed profile of the external contour of the tire at ¢ =0, for loading cases I and III,
are shown in Fig. 2. A comparison with the results for the linear problem from [1] is also given. In addition, Table 2 shows de-
flections of the tire at the center of the loading area for all the four loads considered and the experimental data from [16]. As is
seen, the results of calculating the deformed profiles of the tire in the geometrically nonlinear statement for loading cases I and
II are unacceptable because of the highly overestimated values of the deflections. The reason is that, in these cases, the loads
modeling the distribution of the contact pressure differ from their actual distribution considerably. The solution of the problem
in the linear statement shows that the deformed profiles of the tire are practically the same for all loading types [1].

To make the picture more complete, we also elucidated the effect of anisotropy on the deformed state of a tire with a
breaker containing two angle-ply resin-cord layers reinforced at £70° angles to the meridian [17]. Figure 3 shows displace-
ments of the inner surface of the tire as functions of the meridional coordinate for loading type III and some values of the cir-
cumferential coordinate ¢ = n1t/20, where n=0, 1, 2, 3, 4, 7. On the whole, the effect of anisotropy on the distribution of the dis-

placements v; and v3 is barely noticeable. On the contrary, the circumferential displacement v; , which is comparable in

magnitude with the meridional displacement v; , is distributed at ¢ = 7/20and ¢ = n/10in a rather intricate manner, with a no-

ticeable disturbance of the conditions of symmetry and antisymmetry.
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