A sampling surfaces method and its application to three-dimensional exact solutions for piezoelectric laminated shells

G.M. Kulikov *, S.V. Plotnikova

Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street, 106, Tambov 392000, Russia

ARTICLE INFO

Article history:
Received 24 November 2012
Received in revised form 9 February 2013
Available online 22 February 2013

Keywords:
Piezoelectric laminated shell
Sampling surfaces method
3D exact solutions
Cross-ply shell
Angle-ply shell

Abstract

The application of the sampling surfaces (SaS) method to piezoelectric laminated composite plates is presented in a companion paper (Kulikov, G.M., Plotnikova, S.V., Three-dimensional exact analysis of piezoelectric laminated plates via sampling surfaces method. International Journal of Solids and Structures 50, http://dx.doi.org/10.1016/j.ijsolstr.2013.02.015). In this paper, we extend the SaS method to shells to solve the static problems of three-dimensional (3D) electroelasticity for cylindrical and spherical piezoelectric laminated shells. For this purpose, we introduce inside the nth layer \(l_n \) not equally spaced SaS parallel to the middle surface of the shell and choose displacements of these surfaces as basic kinematic variables. Such choice of displacements permits, first, the presentation of governing equations of the proposed piezoelectric shell formulation in a very compact form and, second, gives an opportunity to utilize the strain–displacement equations, which precisely represent all rigid-body shell motions in any convected curvilinear coordinate system. It is shown that the developed piezoelectric shell formulation can be applied efficiently to finding of 3D exact solutions for piezoelectric cross-ply and angle-ply shells with a specified accuracy using a sufficient number of SaS, which are located at Chebyshev polynomial nodes and layer interfaces as well.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a considerable work has been carried out on the three-dimensional (3D) exact analysis of piezoelectric laminated shells. In the literature, there are at least four approaches to 3D exact solutions of electroelasticity for piezoelectric shells (see, e.g., survey papers of Tauchert et al., 2000; Wu et al., 2008); namely, the Pagano approach, the state space approach, the series expansion approach and the asymptotic approach. The first approach (Vlasov, 1957; Pagano, 1969, 1970) was recently implemented for a piezoelectric shell (Wu and Huang, 2009; Wu and Tsai, 2012), which is artificially divided into a large number of individual layers with equal thicknesses following an idea of Soldatos and Hadjigeorgiou (1990). The state space approach was utilized by Xu and Noor (1996), Chen et al. (2001), Wang and Zhong (2003) and Wu and Liu (2007). The most popular series expansion approach was extensively used by Chen and Shen (1996), Chen et al. (1996), Dube et al. (1996), Dumir et al. (1997), Heyliger (1997), Kapuria et al. (1997a,b) and Kapuria et al. (1997c,d). The 3D exact solutions based on the asymptotic shell formulation were obtained in contributions of Cheng and Reddy (2002), Wu et al. (2005), Wu and Syu (2007) and Wu et al. (2007).

The present paper is intended to show that the sampling surfaces (SaS) method can be also applied efficiently to 3D exact solutions of electroelasticity for piezoelectric cylindrical and spherical shells. In accordance with this method, we choose inside the nth layer \(l_n \) not equally spaced SaS parallel to the middle surface of the shell and introduce the displacement vectors \(\mathbf{u}^{0,1}, \mathbf{u}^{0,2}, \ldots, \mathbf{u}^{0,N_n} \) of these surfaces as basic shell variables, where \(N_n \geq 3 \). Such choice of displacements permits, first, the presentation of governing equations of the proposed piezoelectric shell formulation in a very compact form and, second, gives an opportunity to utilize the strain–displacement equations, which precisely represent all rigid-body shell motions in any convected curvilinear coordinate system (Kulikov and Plotnikova, 2013a). The SaS method has been already utilized for the analysis of elastic plates and shells (Kulikov and Plotnikova, 2011b, 2012a,b) and piezoelectric plates (Kulikov and Plotnikova, 2013b). It is necessary to note that the term SaS should not be confused with such terms as fictitious interfaces or virtual interfaces, which are extensively used in layer-wise theories. The main difference consists in the lack of possibility to employ the polynomials of high degree in the thickness direction because in conventional layer-wise theories only the third and fourth order polynomial interpolations are admissible (see, e.g., Carrera, 2002, 2003; Carrera et al., 2011). This restricts the use of the fictitious/virtual interfaces technique for finding of 3D exact solutions of piezoelectricity. On the contrary, the SaS method...
permits the use of polynomials of high degree. The latter gives an opportunity to derive the 3D exact solutions for piezoelectric laminated shells with a prescribed accuracy employing a sufficient number of not equally spaced SaS.

It should be mentioned that the developed approach with equally spaced SaS (Kulikov and Plotnikova, 2011b) does not work properly with Lagrange polynomials of high degree because the Runge’s phenomenon can occur, which yields the wild oscillation at the edges of the interval when the user deals with any specific functions. If the number of equally spaced nodes is increased then the oscillations become even larger. Fortunately, the use of Chebyshev polynomial nodes (Burden and Faires, 2010) can help to improve significantly the behavior of Lagrange polynomials of high degree for which the error will go to zero as \(h \to \infty \).

The authors restrict themselves to finding five right digits in all examples presented. The better accuracy is possible of course but requires more SaS inside each layer to be taken.

2. Kinematic description of undeformed laminated shell

Consider a thick laminated shell of the thickness \(h \). Let the middle surface \(\Omega \) be described by orthogonal curvilinear coordinates \(\theta_1 \) and \(\theta_2 \), which are referred to the lines of principal curvatures of its surface. The coordinate \(\theta_1 \) is oriented along the unit vector \(\alpha_1 = e_1 \), normal to the middle surface. Introduce the following notations:

\[
\mathbf{a}_n = \mathbf{R}_n = A_n \mathbf{e}_n,
\]

where \(\mathbf{e}_n \) are the orthonormal base vectors and \(A_n \) are the coefficients of the first fundamental form; \(\theta_3^{(n)} \) are the transverse coordinates of SaS of the \(n \)th layer expressed as

\[
\theta_3^{(n)}(u_n, \theta_1, \theta_2) = \frac{1}{2} (\theta_3^{(n-1)} + \theta_3^{(n)}) - \frac{1}{2} h_n \cos \left(\frac{\pi}{2} \frac{2m_n - 3}{l_n - 2} \right),
\]

where \(\theta_3^{(n-1)} \) and \(\theta_3^{(n)} \) are the transverse coordinates of layer interfaces \(\Omega_1^{(n-1)} \) and \(\Omega_1^{(n)} \), and \(h_n = \theta_3^{(n)} - \theta_3^{(n-1)} \) is the thickness of the \(n \)th layer; \(\mathbf{R} = \mathbf{R}_n \mathbf{e}_n \) is the position vector of any point in the shell body; \(\mathbf{R}^{(n)} = \mathbf{R}_n \mathbf{e}_n \) are the position vectors of SaS of the \(n \)th layer; \(\mathbf{g}_n \) are the base vectors in the shell body defined as

\[
\mathbf{g}_n = \mathbf{R}_n = A_n \mathbf{e}_n,
\]

where \(c_n \) are the components of the shifter tensor and \(k_n \) are the principal curvatures of the middle surface; \(\mathbf{g}_1^{(n)} \) are the base vectors of SaS of the \(n \)th layer (see Fig. 1) given by

\[\Omega^{(n)} = \Omega^{(n+1)} - \Omega^{(n)} - \Theta^{(n)} - \Theta^{(n+1)} - \Delta^{(n)} - \Delta^{(n+1)} - \Theta^{(n)} - \Theta^{(n+1)}.\]

Table 1

<table>
<thead>
<tr>
<th>Material</th>
<th>PZT-4</th>
<th>PZT-5</th>
<th>(Pb, Ca)(CoO2)(W12)TiO3</th>
<th>Gr/Ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>C111, GPm</td>
<td>139.0</td>
<td>120.0</td>
<td>150.0</td>
<td>183.443</td>
</tr>
<tr>
<td>C222, GPm</td>
<td>139.0</td>
<td>120.0</td>
<td>150.0</td>
<td>11.662</td>
</tr>
<tr>
<td>C313, GPm</td>
<td>115.0</td>
<td>111.0</td>
<td>128.0</td>
<td>11.662</td>
</tr>
<tr>
<td>C1122, GPa</td>
<td>77.8</td>
<td>75.2</td>
<td>37.1</td>
<td>4.363</td>
</tr>
<tr>
<td>C1132, GPa</td>
<td>74.3</td>
<td>75.1</td>
<td>32.3</td>
<td>4.363</td>
</tr>
<tr>
<td>C2232, GPa</td>
<td>74.3</td>
<td>75.1</td>
<td>32.3</td>
<td>3.918</td>
</tr>
<tr>
<td>C3332, GPa</td>
<td>25.6</td>
<td>21.1</td>
<td>55.2</td>
<td>2.87</td>
</tr>
<tr>
<td>C1113, GPa</td>
<td>25.6</td>
<td>21.1</td>
<td>55.2</td>
<td>7.17</td>
</tr>
<tr>
<td>C1211, GPa</td>
<td>30.6</td>
<td>22.6</td>
<td>56.5</td>
<td>7.17</td>
</tr>
<tr>
<td>e11, Cm²₇₃</td>
<td>-5.2</td>
<td>-5.35</td>
<td>1.61</td>
<td>0</td>
</tr>
<tr>
<td>e22, Cm²₇₃</td>
<td>-5.2</td>
<td>-5.35</td>
<td>1.61</td>
<td>0</td>
</tr>
<tr>
<td>e33, Cm²₇₃</td>
<td>15.08</td>
<td>15.78</td>
<td>8.5</td>
<td>0</td>
</tr>
<tr>
<td>e12, Cm²₇₃</td>
<td>12.72</td>
<td>12.72</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e13, Cm²₇₃</td>
<td>1475</td>
<td>1730</td>
<td>238</td>
<td>1728</td>
</tr>
<tr>
<td>e23, Cm²₇₃</td>
<td>1475</td>
<td>1730</td>
<td>238</td>
<td>1728</td>
</tr>
<tr>
<td>e33, Cm²₇₃</td>
<td>1300</td>
<td>1700</td>
<td>209</td>
<td>1728</td>
</tr>
</tbody>
</table>

* Vacuum permittivity \(\varepsilon_0 = 8.854 \text{ pF/m} \).

Remark 1.
As can be seen from Eq. (2), the transverse coordinates of inner SaS coincide with coordinates of Chebyshev polynomial nodes (see, e.g., Burden and Faires, 2010). This fact has a great meaning for a convergence of the SaS method (Kulikov and Plotnikova, 2012b, 2013a).

3. Kinematic description of deformed laminated shell

A position vector of the deformed shell is written as

\[
\mathbf{R} = \mathbf{R} + \mathbf{u},
\]

where \(\mathbf{u} \) is the displacement vector, which is always measured in accordance with the total Lagrangian formulation from the initial configuration to the current configuration directly. In particular, the position vectors of SaS of the \(n \)th layer are

\[
\mathbf{R}^{(n)} = \mathbf{R}^{(n+1)} + \mathbf{u}^{(n+1)} + \mathbf{u}^{(n)},
\]

where \(\mathbf{u}^{(n)} = (\theta_1, \theta_2) \) are the displacement vectors of SaS of the \(n \)th layer.

The base vectors in the current shell configuration are defined as

\[
\mathbf{g} = \mathbf{R} = \mathbf{g} + \mathbf{u},
\]

In particular, the base vectors of deformed SaS of the \(n \)th layer are

\[
\beta^{(n)} = \mathbf{R}^{(n)} = \mathbf{g}^{(n)} + \mathbf{u}^{(n)} + \mathbf{u}^{(n+1)} = \mathbf{g} + \beta^{(n)},
\]

where \(c_{i3}^{(n)} + k_{i3}^{(n)} \) are the components of the shifter tensor and \(g_{i3}^{(n)} = e_3 + \beta^{(n)} \).
where $\beta^{\alpha\beta}(\theta_1, \theta_2)$ are the values of the derivative of the 3D displacement vector with respect to coordinate θ_2 at SaS.

The Green–Lagrange strain tensor in an orthogonal curvilinear coordinate system can be written as

$$2\varepsilon = \frac{1}{A_2 A_3} \left(\mathbf{g} \cdot \mathbf{g} - \mathbf{g}_i \cdot \mathbf{g}_i \right),$$

where $A_2 = 1$ and $A_3 = 1$. In particular, the Green–Lagrange strains at SaS are

$$2\varepsilon^{(n)} = 2\varepsilon_0(\theta_3^{(n)}).$$

Substituting Eqs. (4) and (9) into the strain–displacement relationships (12) and discarding the non-linear terms, one obtains

$$2\varepsilon^{(n)} = \frac{1}{A_2 c_2} \mathbf{u}^{(n)} \cdot \mathbf{e} + \frac{1}{A_3 c_3} \mathbf{u}^{(n)} \cdot \mathbf{e}_5,$$

$$2\varepsilon^{(n)} = \beta^{(n)} \cdot \mathbf{e}_5 + \frac{1}{A_3 c_3} \mathbf{u}^{(n)} \cdot \mathbf{e}_5, \quad \beta^{(n)} = \beta^{(n)} \cdot \mathbf{e}_1. \quad (13)$$

Next, we represent the displacement vectors $\mathbf{u}^{(n)}$ and $\beta^{(n)}$ in the reference surface frame \mathbf{e}_i as follows:

$$\mathbf{u}^{(n)} = \sum_i u^{(n)} \mathbf{e}_i,$$

$$\beta^{(n)} = \sum_i \beta^{(n)} \mathbf{e}_i. \quad (14)$$

Using (14) and well-known formulas for the derivatives of unit vectors \mathbf{e}_i with respect to orthogonal curvilinear coordinates (Kulikov and Plotnikova, 2012b, 2013a), we have

$$\frac{1}{A_2} \mathbf{u}^{(n)} = \sum_i \beta^{(n)} \mathbf{e}_i,$$

where

$$\beta^{(n)} = \frac{1}{A_2} u^{(n)} + B_2 u^{(n)} + k_2 u^{(n)},$$

$$\beta^{(n)} = \frac{1}{A_2} u^{(n)} - B_2 u^{(n)} \quad \text{for} \quad \beta \neq \alpha,$$

$$\beta^{(n)} = \frac{1}{A_2} u^{(n)} - k_2 u^{(n)}, \quad B_2 = \frac{1}{A_2 A_3} A_3 \beta \quad \text{for} \quad \beta \neq \alpha. \quad (15)$$

Substitution of presentations (15) and (16) into the strain–displacement relationships (13) yields the component form of these relationships

$$2\varepsilon^{(n)} = \frac{1}{c_2} \mathbf{u}^{(n)} \cdot \mathbf{e} + \frac{1}{c_3} \mathbf{u}^{(n)} \cdot \mathbf{e}_5, \quad \beta^{(n)} = \beta^{(n)} \cdot \mathbf{e}_1. \quad (18)$$

Up to this moment, no assumptions concerning displacement and strain fields have been made. We start now with the first fundamental assumption of the proposed shell formulation. Let us assume that the displacements are distributed through the thickness of the nth layer as follows:

$$u^{(n)} = \sum_{l=1}^{n-1} \theta^{(n)} l^0 u^{(n)} + \theta^{(n)} l^{n-1} \leq \theta^{(n)} \leq \theta^{(n)} l^n, \quad (19)$$

where $L^{(n)}(\theta)$ are the Lagrange polynomials of degree $l_n - 1$ expressed as

$$L^{(n)} = \prod_{j_n \neq l_n} \frac{\theta_n - \theta^{(n)} \theta^{(n)}}{l_n - \theta^{(n)} l^n}. \quad (20)$$

The use of Eqs. (10), (15), and (19) yields

$$\theta^{(n)} = \sum_{l_n} M^{(n)}(\theta^{(n)} l) u^{(n)} l, \quad (21)$$

where $M^{(n)}(\theta)$ are the derivatives of Lagrange polynomials. The values of these derivatives at SaS are calculated as

$$M^{(n)}(\theta^{(n)} l) = \frac{1}{\theta^{(n)} l_n - \theta^{(n)} l} \sum_{j_n \neq l_n} \frac{\theta^{(n)} l - \theta^{(n)} l_n}{\theta^{(n)} l_j - \theta^{(n)} l} \quad \text{for} \quad j_n \neq l_n. \quad (22)$$

So, the key functions $\beta^{(n)}$ of the laminated shell formulation are represented according to (21) as a linear combination of displacements of SaS of the nth layer $u^{(n)}$.

The following step consists in a choice of the correct approximation of strains through the thickness of the nth layer. It is apparent that the strain distribution should be chosen similar to the displacement distribution (19). Thus, the second fundamental assumption of the developed shell formulation can be written as

$$\varepsilon^{(n)} = \sum_{l_n} L^{(n)}(\varepsilon^{(n)} l) \theta^{(n)} l, \quad \theta^{(n)} l^{n-1} \leq \theta^{(n)} \leq \theta^{(n)} l^n. \quad (23)$$
Remark 2. Strain-displacement relationships (18) and (23) exactly represent all rigid-body motions of a laminated shell in any convected curvilinear coordinate system. The proof of this statement is given by Kulikov and Plotnikova (2013a).

4. Description of electric field

The relation between the electric field and the electric potential φ is given by

$$E_i = -\frac{1}{A_c} \varphi,$$

In particular, the electric field vector at SaS of the nth layer is presented as

$$E_{2i}^{(n)} = E_2(\varphi^{(n)}_0) = -\frac{1}{A_c^{en}} \varphi^{(n)_e},$$

$$E_{3i}^{(n)} = E_3(\varphi^{(n)}_0) = -\varphi^{(n)_i}.$$
through the thickness of the potential and the electric field vector, which are distributed in the case of conservative loading can be written as

\[\phi_{\text{th}}(\theta_1, \theta_2) \]

Now, we accept the third fundamental assumption of the proposed piezoelectric shell formulation concerning the electric potential and the electric field vector, which are distributed through the thickness of the nth layer as follows:

\[\phi_{\text{th}}(\theta_1, \theta_2) = \sum_{n=1}^{N} \phi_{\text{th}}^{(n)}(\theta_1, \theta_2) \]

The use of Eqs. (27) and (28) leads to a simple formula

\[\psi_{\text{th}}(\theta_1, \theta_2) = \sum_{n=1}^{N} M_{\text{th}}^{(n)}(\theta_1, \theta_2) \phi_{\text{th}}^{(n)}(\theta_1, \theta_2) \]

which is similar to (21). This implies that the key functions \(\psi_{\text{th}}^{(n)} \) of the piezoelectric shell formulation are represented as a linear combination of electric potentials of SaS of the nth layer \(\phi_{\text{th}}^{(n)} \).

5. Variational formulation

The variational equation for the piezoelectric laminated shell in the case of conservative loading can be written as

\[\delta \Pi = 0 \]

where \(\Pi \) is the extended potential energy (Tzou, 1993) defined as

\[\Pi = \frac{1}{2} \int_{\Omega} \sum_{n=1}^{N} \left(\sum_{i=1}^{6} D_{ij}^{(n)} E_{ij}^{(n)} - \sum_{i=1}^{6} P_{ij}^{(n)} \right) A_{1}A_{2}c_{1}c_{2}d\theta_{1}d\theta_{2} - W, \]

\[W = \int_{\Omega} \sum_{n=1}^{N} \left(\sum_{i=1}^{6} P_{ij}^{(n)} - q^{i} \phi_{ij}^{(n)} \right) A_{1}A_{2}c_{1}^{(n)}c_{2}^{(n)}d\theta_{1}d\theta_{2} - W_{\perp}, \]

where \(\sigma_{ij}^{(n)} \) is the stress tensor of the nth layer; \(D_{ij}^{(n)} \) is the electric displacement vector of the nth layer; \(u_{ij}^{(n)} = u_{ij}^{(n)}(\theta_{1}, \theta_{2}) \) and \(u_{ij}^{(n)} = u_{ij}^{(n)}(\theta_{1}, \theta_{2}) \) are the displacements of bottom and top surfaces \(\Omega^{(n)} \) and \(\Omega^{(n)} \); \(\phi_{ij}^{(n)} = \phi_{ij}^{(n)}(\theta_{1}, \theta_{2}) \) and \(\phi_{ij}^{(n)} = \phi_{ij}^{(n)}(\theta_{1}, \theta_{2}) \) are the electric potentials of bottom and top surfaces; \(c_{ij}^{(n)} = 1 + k_{ij}^{(n)} \phi_{ij}^{(n)} \) and \(c_{ij}^{(n)} = 1 + k_{ij}^{(n)} \phi_{ij}^{(n)} \) are the components of the shifter tensor at outer surfaces; \(p_{ij}^{(n)} \) and \(p_{ij}^{(n)} \) are the loads acting on outer surfaces; \(q^{i} \) and \(q^{i} \) are the electric charges on outer surfaces; \(W_{\perp} \) is the work done by external electromechanical loads applied to the boundary surface \(\Sigma \).

Substituting strain and electric field distributions (23) and (29) in Eq. (32) and introducing stress resultants

\[H_{ij}^{(n)} = \int_{\Omega_{ij}^{(n)}} D_{ij}^{(n)} c_{1}c_{2}d\theta_{1}d\theta_{2} \]

and electric displacement resultants

\[T_{ij}^{(n)} = \int_{\Omega_{ij}^{(n)}} E_{ij}^{(n)} c_{1}c_{2}d\theta_{1}d\theta_{2}, \]

one obtains

\[\Pi = \frac{1}{2} \int_{\Omega} \sum_{n=1}^{N} \left(\sum_{i=1}^{6} D_{ij}^{(n)} E_{ij}^{(n)} - \sum_{i=1}^{6} T_{ij}^{(n)} \right) A_{1}A_{2}c_{1}c_{2}d\theta_{1}d\theta_{2} - W. \]

For simplicity, we consider the case of linear piezoelectric materials described as

\[\sigma_{ij}^{(n)} = \sum_{k=1}^{N} C_{ijkl}^{(n)} e_{kl}^{(n)} - \sum_{k=1}^{N} C_{ijkl}^{(n)} k_{kl}^{(n)} \theta_{1}^{(n)} \theta_{2}^{(n)} \]

\[D_{ij}^{(n)} = \sum_{k=1}^{N} e_{ij}^{(n)} k_{kl}^{(n)} + \sum_{k=1}^{N} e_{ij}^{(n)} e_{kl}^{(n)} \theta_{1}^{(n)} \theta_{2}^{(n)} \]

where \(C_{ijkl}^{(n)} \) and \(e_{ij}^{(n)} \) are the elastic, piezoelectric and dielectric constants of the nth layer.

Inserting (37) and (38) correspondingly in Eqs. (34) and (35) and allowing for strain and electric field distributions (23) and (29), we arrive at needed formulas for stress and electric displacement resultants

\[H_{ij}^{(n)} = \sum_{k=1}^{N} \lambda_{ij}^{(n)} k_{kl}^{(n)} + \sum_{k=1}^{N} e_{ij}^{(n)} e_{kl}^{(n)} \theta_{1}^{(n)} \theta_{2}^{(n)} \]

\[T_{ij}^{(n)} = \sum_{k=1}^{N} \lambda_{ij}^{(n)} k_{kl}^{(n)} + \sum_{k=1}^{N} e_{ij}^{(n)} e_{kl}^{(n)} \theta_{1}^{(n)} \theta_{2}^{(n)} \]

where

\[\lambda_{ij}^{(n)} = \int_{\Omega_{ij}^{(n)}} L^{(n)} c_{1}c_{2}d\theta_{1}d\theta_{2}. \]
Fig. 3. Distributions of displacements, transverse shear stresses, electric potential and electric displacement through the thickness of the three-layer shell under electric loading for $I_1 = I_2 = I_3 = 7$.

Table 6
Results for an angle-ply shell with $R/h = 2$ under mechanical loading.

<table>
<thead>
<tr>
<th>I_3</th>
<th>$W_1(-0.5)$</th>
<th>$W_2(-0.5)$</th>
<th>$W_3(0)$</th>
<th>$\phi_1(-0.5)$</th>
<th>$\phi_2(-0.5)$</th>
<th>$\phi_3(-0.5)$</th>
<th>$\theta_12(-0.5)$</th>
<th>$\theta_13(-0.5)$</th>
<th>$\theta_23(-0.5)$</th>
<th>$\theta_3(0.125)$</th>
<th>$\theta_3(0.125)$</th>
<th>$D_3(0.25)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.0761</td>
<td>1.5908</td>
<td>2.4725</td>
<td>2.1609</td>
<td>-2.4302</td>
<td>1.2751</td>
<td>-1.5292</td>
<td>39.469</td>
<td>-5.0190</td>
<td>60.729</td>
<td>-2.3067</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.0771</td>
<td>1.5916</td>
<td>2.4738</td>
<td>2.1510</td>
<td>-2.3994</td>
<td>1.3090</td>
<td>-1.5301</td>
<td>39.888</td>
<td>-5.9840</td>
<td>60.613</td>
<td>-2.3636</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.0771</td>
<td>1.5916</td>
<td>2.4738</td>
<td>2.1511</td>
<td>-2.3994</td>
<td>1.3090</td>
<td>-1.5301</td>
<td>39.884</td>
<td>-5.9738</td>
<td>60.614</td>
<td>-2.3636</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.0771</td>
<td>1.5916</td>
<td>2.4738</td>
<td>2.1511</td>
<td>-2.3993</td>
<td>1.3090</td>
<td>-1.5301</td>
<td>39.884</td>
<td>-5.9738</td>
<td>60.614</td>
<td>-2.3636</td>
<td></td>
</tr>
</tbody>
</table>
Table 7

Results for an angle-ply shell with \(R/h = 10 \) under mechanical loading.

<table>
<thead>
<tr>
<th>(I_h)</th>
<th>(u_1(0.5))</th>
<th>(u_2(0.5))</th>
<th>(u_1(0))</th>
<th>(\phi(0.5))</th>
<th>(\sigma_{11}(0.5))</th>
<th>(\sigma_{12}(0.5))</th>
<th>(\sigma_{13}(0.125))</th>
<th>(\sigma_{21}(0.125))</th>
<th>(\sigma_{31}(0.125))</th>
<th>(D_3(0.25))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.152</td>
<td>-1.549</td>
<td>16.792</td>
<td>8.768</td>
<td>-9.212</td>
<td>11.514</td>
<td>1.489</td>
<td>49.165</td>
<td>-12.305</td>
<td>60.677</td>
</tr>
<tr>
<td>7</td>
<td>5.152</td>
<td>-1.549</td>
<td>16.792</td>
<td>8.768</td>
<td>-9.212</td>
<td>11.514</td>
<td>1.489</td>
<td>49.165</td>
<td>-12.305</td>
<td>60.677</td>
</tr>
</tbody>
</table>

Fig. 4. Distributions of transverse stresses, electric potential and electric displacement in the thickness direction of the angle-ply cylindrical shell under mechanical loading for \(I_1 = I_2 = I_3 = I_4 = 7 \).
The proposed 3D variational formulation generalizes 6- and 9- parameter formulations for piezoelectric shells based on the use of displacements of respectively two and three SA (Kulikov and Plotnikova, 2008, 2011a).

6. 3D exact solution for piezoelectric orthotropic cylindrical shells

In this section, we study a simply supported piezoelectric laminated orthotropic cylindrical shell. Let the middle surface of the shell be described by axial and circumferential coordinates \(\theta_1 \) and \(\theta_2 \). The edge boundary conditions of the shell are assumed to be fully supported and electrically grounded, that is,

\[\sigma_{11}^{(n)} = u_{2}^{(n)} = \varphi^{(n)} = 0 \text{ at } \theta_1 = 0 \text{ and } \theta_1 = L, \quad (42) \]

where \(L \) is the length of the shell. To satisfy boundary conditions (42), we search an analytical solution of the problem by a method of double Fourier series expansion

\[u_{1}^{(n)} = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \frac{\cos \frac{r \pi \theta_1}{L}}{L} \cos s \theta_2, \]

\[u_{2}^{(n)} = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \frac{\sin \frac{r \pi \theta_1}{L}}{L} \sin s \theta_2, \]

\[u_{3}^{(n)} = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \frac{\sin \frac{r \pi \theta_1}{L}}{L} \cos s \theta_2, \]

\[\varphi^{(n)} = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \frac{\sin \frac{r \pi \theta_1}{L}}{L} \cos s \theta_2, \quad (43) \]

The external electromechanical loads are also expanded in double Fourier series. Substituting (43) and Fourier series corresponding to electromechanical loading in Eqs. (33) and (36) with \(W^* = 0 \) and allowing for relations (17), (18), (21), (25), (26), (30), (39), and (40), one finds

\[\Pi = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \Pi_{rs}(u_{rs}^{(n)}, \varphi_{rs}^{(n)}). \quad (44) \]

Invoking further the variational equation (31), the following system of linear algebraic equations of order \(4(\sum n_i - N + 1) \) is obtained:

\[\frac{\partial \Pi_{rs}}{\partial u_{rs}^{(n)}} = 0, \quad \frac{\partial \Pi_{rs}}{\partial \varphi_{rs}^{(n)}} = 0. \quad (45) \]

The linear system (45) can be easily solved by a method of Gaussian elimination.

The described algorithm was performed with the Symbolic Math Toolbox, which incorporates symbolic computations into the numeric environment of MATLAB. This gives the possibility to derive the exact solutions of 3D electroelasticity for laminated orthotropic cylindrical shells with a specified accuracy.

6.1. Piezoelectric three-layer cylindrical shell under mechanical loading

Consider a symmetric three-layer cylindrical shell with ply thicknesses \(h_1 = h_2 = h_3 = h/3 \) under an imposed transverse deformation.

Fig. 5. Accuracy of satisfying the boundary conditions \(\delta_1, \delta_4 \) and \(\delta_4^\prime \) on the bottom (\(\bigcirc \)) and top (\(\bigcirc \)) surfaces of the angle-ply cylindrical shell under mechanical loading.
\[p_i = p_i^- = p_i^+ = p_i^\mp = 0, \quad u_i^N = u_0 \sin \frac{\pi \theta_1}{L} \cos \theta_2. \quad (46) \]

The bottom and top layers are composed of PZT-4 with material properties given in Table 1. The middle layer is made of a fictitious material with the elastic constants exactly half of the PZT-4 and the piezoelectric and dielectric constants exactly double those of the PZT-4 (Heyliger, 1997). The both outer surfaces of the shell are assumed to be electrically grounded. To compare the results with an exact solution of Heyliger (1997), one has to fix \(L = R^* = 0.01 \) m and \(u_0 = 10^{-3} \) m, where \(R^* \) is the radius of the top cylindrical surface. For the robust analysis it is convenient to introduce the following variables:
sufficiently large number of SaS denoted by n allows one to find the 3D exact solution for thick piezoelectric laminated orthotropic shells with a prescribed accuracy by using a sufficiently large number of SaS denoted by I_n. Fig. 2 displays the distributions of displacements, transverse shear stresses, electric potential and electric displacement in the thickness direction for different values of the slenderness ratio $S = R/h$ employing seven SaS for each layer. These results demonstrate convincingly the high potential of the proposed piezoelectric shell formulation. This is due to the fact that boundary conditions on the bottom and top surfaces of the shell and continuity conditions at layer interfaces for transverse shear stresses are satisfied exactly, which are evaluated through the constitutive equations (37).

Table 10

<table>
<thead>
<tr>
<th>I_n</th>
<th>$10^{11} \times u_1(0, 0, z)$</th>
<th>$10^{11} \times u_3(L/2, 0, z)$</th>
<th>$10^3 \times \varphi(0)$</th>
<th>$\sigma_{11}(-0.5)$</th>
<th>$\sigma_{11}(0.5)$</th>
<th>$\sigma_{33}(-0.5)$</th>
<th>$\sigma_{33}(0.5)$</th>
<th>$10^5 \times D_1(-0.5)$</th>
<th>$10^5 \times D_1(0.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.2609</td>
<td>2.2609</td>
<td>–1.3557</td>
<td>0.81645</td>
<td>1.0028</td>
<td>1.1895</td>
<td>0.9854</td>
<td>18.166</td>
<td>4.5526</td>
</tr>
<tr>
<td>5</td>
<td>1.2626</td>
<td>2.2278</td>
<td>–1.3615</td>
<td>0.88583</td>
<td>1.0345</td>
<td>1.3005</td>
<td>0.9985</td>
<td>19.129</td>
<td>4.7833</td>
</tr>
<tr>
<td>7</td>
<td>1.2626</td>
<td>2.2278</td>
<td>–1.3616</td>
<td>0.88438</td>
<td>1.0378</td>
<td>1.2976</td>
<td>1.0002</td>
<td>19.145</td>
<td>4.7862</td>
</tr>
<tr>
<td>9</td>
<td>1.2626</td>
<td>2.2278</td>
<td>–1.3616</td>
<td>0.88485</td>
<td>1.0376</td>
<td>1.2984</td>
<td>1.0000</td>
<td>19.145</td>
<td>4.7862</td>
</tr>
<tr>
<td>11</td>
<td>1.2626</td>
<td>2.2278</td>
<td>–1.3616</td>
<td>0.88489</td>
<td>1.0376</td>
<td>1.2985</td>
<td>1.0000</td>
<td>19.145</td>
<td>4.7862</td>
</tr>
<tr>
<td>13</td>
<td>1.2626</td>
<td>2.2278</td>
<td>–1.3616</td>
<td>0.88489</td>
<td>1.0376</td>
<td>1.2985</td>
<td>1.0000</td>
<td>19.145</td>
<td>4.7862</td>
</tr>
<tr>
<td>Exact</td>
<td>1.26</td>
<td>2.23</td>
<td>–1.36</td>
<td>0.88489</td>
<td>1.0376</td>
<td>1.2985</td>
<td>1.0000</td>
<td>19.145</td>
<td>4.7862</td>
</tr>
</tbody>
</table>

The data listed in Tables 2 and 3 show that the SaS method permits one to find the 3D exact solution for thick piezoelectric laminated orthotropic shells with a prescribed accuracy by using a sufficiently large number of SaS denoted by I_n. Fig. 2 displays the distributions of displacements, transverse shear stresses, electric potential and electric displacement in the thickness direction for different values of the slenderness ratio $S = R/h$ employing seven SaS for each layer. These results demonstrate convincingly the high potential of the proposed piezoelectric shell formulation. This is due to the fact that boundary conditions on the bottom and top surfaces of the shell and continuity conditions at layer interfaces for transverse shear stresses are satisfied exactly, which are evaluated through the constitutive equations (37).

6.2. Piezoelectric three-layer cylindrical shell under electric loading

Consider next the same three-layer cylindrical shell with $L = R = 0.01$ m subjected to electric loading

$$
\varphi^{(n)} = 0, \quad \varphi^{(n)} = \varphi_0 \sin \frac{n \pi h}{L} \cos 2 \theta_2,
$$

where $\varphi_0 = 10$ V. The bottom and top surfaces of the shell are assumed to be traction free.

Tables 4 and 5 demonstrate again the high potential of the piezoelectric laminated shell formulation developed. Fig. 3 shows the distributions of displacements, transverse shear stresses, electric potential and electric displacement in the thickness direction for different values of the slenderness ratio $S = R/h$ employing seven SaS for each layer. It is seen that boundary conditions on the bottom and top surfaces of the shell and continuity conditions at layer interfaces for transverse shear stresses are fulfilled properly.

7. 3D exact solution for piezoelectric anisotropic cylindrical shells

Herein, we study a symmetric deformation of the simply supported piezoelectric laminated anisotropic shell. The boundary conditions of the shell with electrically grounded edges are taken as

$$
\sigma_{11}^{(n)} = \sigma_{12}^{(n)} = \sigma_{33}^{(n)} = \varphi^{(n)} = 0 \quad \text{at} \quad \theta_1 = 0 \quad \text{and} \quad \theta_1 = L
$$

(49)

to simulate simple supports. In the case of a monoclinic piezoelectric material with poling direction coincident with the θ_3 axis, we can search an analytical solution of the problem as follows:

$$
\begin{align*}
\varphi^{(n)} &= \sum_{i=1}^{\infty} u_1^{(n)} \cos \frac{n \pi \theta_1}{L}, \\
\varphi^{(n)} &= \sum_{i=1}^{\infty} u_2^{(n)} \cos \frac{n \pi \theta_1}{L}, \\
\varphi^{(n)} &= \sum_{i=1}^{\infty} u_3^{(n)} \sin \frac{n \pi \theta_1}{L}
\end{align*}
$$

(50)

The external electromechanical loads are also expanded in Fourier series.
Substituting (50) and Fourier series corresponding to electro-mechanical loading in Eqs. (33) and (36) and taking into account relations (17), (18), (21), (25), (26), (30), (39), and (40), one finds

$$
\Pi = \sum_{r=1}^{\infty} \Pi_r (u_r^{[n]} \cdot \phi_r^{[n]}).
$$

(51)

The use of the variational equation (31) leads to a system of linear algebraic equations of order 4($\sum u_n - N + 1$):

$$
\frac{\partial \Pi_r}{\partial u_r^{[n]}} = 0, \quad \frac{\partial \Pi_r}{\partial \phi_r^{[n]}} = 0,
$$

(52)

which is solved by a method of Gaussian elimination.

The described algorithm was performed with the Symbolic Math Toolbox, which incorporates symbolic computations into the numeric environment of MATLAB. This allows one to derive the exact solutions of 3D electroelasticity for piezoelectric anisotropic cylindrical shells with a specified accuracy.

7.1. Angle-ply shell with attached piezoelectric layers under mechanical loading

An angle-ply cylindrical shell with the stacking sequence [45/-45/0] is composed of the graphite-epoxy composite and covered with PZT-4 layers on its bottom and top surfaces. This means that a four-layer cylindrical shell [PZT/45/-45/PZT] is studied. The electromechanical properties of both materials are given in Table 1. The interfaces between the substrate and piezoelectric layers are electrically bonded and grounded. The geometric parameters are taken to be $L = R = 0.1$ m and $h_n = h/4$, where R is the radius of the middle cylindrical surface and $n = 1, 2, 3, 4$.

The boundary conditions on the bottom and top surfaces are written as

$$
\sigma_{13}^{[0]} = \sigma_{13}^{[N]} = \sigma_{23}^{[0]} = \sigma_{23}^{[N]} = 0, \quad \sigma_{33}^{[0]} = p_0 \sin \frac{\pi h_1}{L},
$$

$$
D_1^{[0]} = 0, \quad \phi_s^{[0]} = 0,
$$

(53)

where $p_0 = 100$ Pa. To analyze the derived results for both types of loading efficiently, we introduce the following variables:

$$
\tilde{u}_1 = 10^{10} \times u_1(0, z), \quad \tilde{u}_2 = 10^{11} \times u_2(0, z),
$$

$$
\tilde{u}_3 = 10^{10} \times u_3(L/2, z), \quad \tilde{\sigma}_{11} = 10^{-2} \times \sigma_{11}(L/2, z),
$$

$$
\tilde{\sigma}_{22} = 10^{-2} \times \sigma_{22}(L/2, z), \quad \tilde{\phi} = 10^3 \times \phi(L/2, z),
$$

$$
\tilde{\sigma}_{12} = 10^{-1} \times \sigma_{12}(L/2, z), \quad \tilde{\sigma}_{13} = \sigma_{13}(0, z),
$$

(54)

The data from Tables 6 and 7 show that the SaS method gives the possibility to find the exact solution of 3D electroelasticity for thick angle-ply cylindrical shells with a prescribed accuracy using a sufficient number of SaS. Fig. 4 presents the distributions of the transverse stresses and electric potential through the thickness of a shell and the electric displacement through the
thicknesses of piezoelectric layers for different values of the slenderness ratio \(R/h \) employing seven S\(a\)S for each layer. As can be seen, the boundary conditions on bottom and top surfaces and the continuity conditions at layer interfaces for transverse stress and electric displacement components are satisfied with a high accuracy. This statement is confirmed convincingly in Fig. 5 by means of logarithmic errors

\[
\delta_2 = \log |\sigma_{33}(0.5)|, \quad \delta_3 = \log |\sigma_{33}(-0.5)|, \\
\delta_4 = \log |\sigma_{33}(0.5) - p_0|, \quad \delta_5 = \log |D_3(-0.5)|,
\]

which characterize the accuracy of fulfilling the boundary conditions for the transverse stresses and electric displacement. It is necessary to note that the proposed S\(a\)S method provides a monotonic convergence except for one curve in Fig. 5(a) that is impossible with equally spaced S\(a\)S (Kulikov and Plotnikova, 2011b). However, the accuracy of computations is slightly worse than in a piezoelectric angle-ply plate formulation (Kulikov and Plotnikova, 2013b).

7.2. Angle-ply shell with attached piezoelectric layers under electric loading

Next, we consider the same angle-ply graphite-epoxy cylindrical shell [45/-45] with attached PZT-4 layers subjected to electric loading. The boundary conditions on the bottom and top surfaces of the shell are

\[
\sigma_{13}^{(0)} = \sigma_{13}^{(N)} = \sigma_{23}^{(0)} = \sigma_{23}^{(N)} = \sigma_{33}^{(0)} = \sigma_{33}^{(N)} = 0, \quad D_3^{(0)} = 0, \quad \varphi^{(N)} = \varphi_0 \sin \frac{\pi \theta}{L},
\]

where \(\varphi_0 = 1 \) V.

Tables 8 and 9 also demonstrate the high potential of the developed piezoelectric shell formulation in the case of electric loading. Fig. 6 shows distributions of the transverse stresses and electric potential through the thickness of a shell and the electric displacement through the thicknesses of piezoelectric layers utilizing as usual seven S\(a\)S for each layer. It is seen that the boundary conditions on both outer surfaces and continuity conditions at layer interfaces for transverse shear stresses and electric displacement are satisfied correctly. Additionally, we present in Fig. 7 the logarithmic errors defined by Eq. (55) with \(p_0 = 0 \), which help to assess the accuracy of fulfilling the boundary conditions for transverse stresses and electric displacement on outer surfaces.

8. 3D exact solution for piezoelectric laminated spherical shells

Finally, we study a symmetric deformation of the piezoelectric laminated spherical shell subjected to mechanical and electric loads acting on its bottom and top surfaces considering the most general boundary conditions

\[
\sigma_{13}^{(0)} = \sigma_{13}^{(N)} = \sigma_{23}^{(0)} = \sigma_{23}^{(N)} = \sigma_{33}^{(0)} = \sigma_{33}^{(N)} = 0, \quad D_3^{(0)} = 0, \quad \varphi^{(N)} = \varphi_0 \sin \frac{\pi \theta}{L},
\]

where \(\varphi_0 = 1 \) V.
8.1. Piezoelectric two-layer spherical shell under mechanical loading

The use of Eq. (59) in Eqs. (17), (18), (21), (25), (26), (30), (31), (32), (33), (39), and (40) yields a system of linear algebraic equations

\[\frac{\partial \Pi}{\partial u_{0_i}^{(n)}} = 0, \quad \frac{\partial \Pi}{\partial \phi_{0_i}^{(n)}} = 0. \]

(60)

The linear system (60) is solved by a method of Gaussian elimination.

8.2. Piezoelectric two-layer spherical shell under electric loading

Consider a shell composed of PZT-5 and (Ph, Ca)(CO\textsubscript{3}W\textsubscript{12})\textsubscript{2} TiO\textsubscript{3} layers with equal thicknesses (Heyliger and Wu, 1999). The electromechanical properties of both materials are given in Table 1. The boundary conditions on the bottom and top surfaces are taken as follows:

\[u_{1i}^{(n)} = 0, \quad u_{2i}^{(n)} = 0, \quad u_{30i}^{(n)} = u_{3i}^{(n)}, \quad \phi_{0i}^{(n)} = \phi_{0i}^{(n)} = 0. \]

(59)

where \(p_0 = 1 \) Pa.

Table 10 shows that the proposed formulation based on the SaS method can be applied efficiently to 3D exact solutions of electroelasticity for very thick piezoelectric laminated spherical shells. Fig. 8 displays the distributions of the transverse displacement and transverse normal stress, electric potential and electric displacement through the thickness of a shell for different slenderness ratios \(R/h \) by using seven SaS for each layer, where \(R \) is the radius of the middle surface. It is seen that the boundary conditions on the bottom and top surfaces and the continuity conditions at the layer interface are satisfied with a high accuracy.

8.3. Piezoelectric two-layer spherical shell under electric loading

In this section, we study a similar piezoelectric two-layer spherical shell subjected to electric loading and consider the following boundary conditions (Heyliger and Wu, 1999):

\[u_{1i}^{(n)} = 0, \quad \phi_{0i}^{(n)} = 0, \quad \sigma_{33i}^{(n)} = 0, \quad \phi_{0i}^{(n)} = \phi_{0i}^{(n)} = 0. \]

(62)

where \(\phi_0 = 1 \) V.

Table 11 lists the results of the convergence study through the use of a various number of SaS for very thick spherical shells. Fig. 9 presents the distributions of transverse displacement and transverse normal stress, electric potential and electric displacement through the thickness of the shell for different slenderness ratios \(R/h \) employing again seven SaS for each layer. As can be seen, boundary conditions on the bottom and top surfaces and continuity conditions at the layer interface are fulfilled properly.

9. Conclusions

An efficient approach to 3D exact solutions of electroelasticity for piezoelectric laminated shells has been proposed. It is based on the new method of SaS located at Chebyshev polynomial nodes inside each layer and interfaces as well. The stress analysis is based on the 3D constitutive equations of piezoelectricity and gives an opportunity to obtain the 3D exact solutions for thick and thin piezoelectric cross-ply and angle-ply shells with a specified accuracy.

Acknowledgments

This work was supported by Russian Ministry of Education and Science under Grant No. 1.472.2011.

References

