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translational degrees of freedom per node
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SUMMARY

This paper presents the finite rotation exact geometry (EG) 12-node solid-shell element with 36 displace-
ment degrees of freedom. The term ‘EG’ reflects the fact that coefficients of the first and second fundamental
forms of the reference surface and Christoffel symbols are taken exactly at each element node. The finite
element formulation developed is based on the 9-parameter shell model by employing a new concept
of sampling surfaces (S-surfaces) inside the shell body. We introduce three S-surfaces, namely, bottom,
middle and top, and choose nine displacements of these surfaces as fundamental shell unknowns. Such
choice allows one to represent the finite rotation higher order EG solid-shell element formulation in a very
compact form and to derive the strain–displacement relationships, which are objective, that is, invariant
under arbitrarily large rigid-body shell motions in convected curvilinear coordinates. The tangent stiffness
matrix is evaluated by using 3D analytical integration and the explicit presentation of this matrix is given.
The latter is unusual for the non-linear EG shell element formulation. Copyright � 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

A large number of works has been carried out to develop the finite rotation higher order shell
formulation with thickness stretching. These works are devoted, as a rule, to the 7-parameter
shell theory [1–9] in which the transverse normal strain varies at least linearly through the shell
thickness. This fact is of great importance since the popular 6-parameter shell formulation based on
the complete 3D constitutive equations exhibits thickness locking. The errors caused by thickness
locking do not decrease with the mesh refinement because the reason of stiffening lies in the shell
theory itself rather than the finite element discretization. To prevent thickness locking, the 3D
constitutive equations have to be modified employing generalized plane stress conditions [10–15].
However, the use of complete 3D constitutive laws within the shell analysis is of great importance
for engineering applications. In this aspect, the advanced finite element techniques were developed,
namely, a hybrid stress method [16] in which the transverse normal stress is constant through the
thickness and a most popular enhanced assumed strain method in which the transverse normal
strain is enriched in the thickness direction by a linear term [17, 18].
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It is well known that a conventional way for developing the higher order shell theory is to utilize
either quadratic or cubic series expansions in the thickness coordinate and to choose as unknowns
the generalized displacements of the midsurface. Herein, the 9-parameter shell model is developed
using a new concept of sampling surfaces (S-surfaces) inside the shell body [7, 19, 20]. We choose
three equally located S-surfaces, namely, bottom, middle and top, and introduce displacement
vectors of these surfaces as fundamental shell unknowns. Such choice of displacements with the
consequent use of Lagrange polynomials of degree two in the thickness direction permits one to
represent the finite rotation higher order 9-parameter shell formulation in a very compact form and
to derive non-linear strain–displacement relationships, which are invariant under arbitrarily large
rigid-body shell motions. Taking into account that displacement vectors of S-surfaces are resolved
in the reference surface frame the proposed higher order shell formulation is very promising for
developing the high performance EG solid-shell elements. This term means that the parametrization
of the reference surface is known and, therefore, coefficients of the first and second fundamental
forms and Christoffel symbols are taken exactly at element nodes, which are employed in innovative
analytical integration schemes proposed by the authors [7, 15, 21].

To avoid shear and membrane locking and have no spurious zero energy modes, the assumed
displacement-independent strains and stress-resultant fields are invoked [22]. This approach was
developed for the finite rotation 6- and 7-parameter EG beam, plate and shell element formulations
in [7, 9, 23, 24]. Herein, the above hybrid stress–strain formulation is generalized to the finite
rotation EG solid-shell element based on the higher order 9-parameter shell theory. The proposed
EG solid-shell element formulation has computational advantages compared with conventional
isoparametric solid-shell element formulations, since it reduces the computational cost of numerical
integration in the evaluation of the tangent stiffness matrix. This is due to the fact that, first, all
element matrices require only direct substitutions, i.e. no numerical matrix inversion is needed.
The latter is unusual for the isoparametric hybrid/mixed shell element formulation [10, 11, 13, 16].
Second, we employ efficient 3D analytical integration [7, 15, 21] that permits the use of coarser
meshes. Finally, the hybrid stress–strain EG solid-shell element developed allows one to utilize load
increments, which are much larger than possible with the existing displacement-based EG solid-
shell elements [6, 12]. Therefore, large-scale computations for thick shell structures undergoing
finite rotations can be carried out efficiently with the help of the proposed EG 12-node solid-shell
element in which there are four nodes at each S-surface exactly.

2. KINEMATIC DESCRIPTION OF UNDEFORMED SHELL

Consider a thick shell of the thickness h. The shell can be defined as a 3D body of volume V bounded
by two outer surfaces �− and �+, located at the distances d− and d+ measured with respect to
the reference surface � such that h =d−+d+, and the edge boundary surface �. The reference
surface is assumed to be sufficiently smooth and without any singularities. This assumption cannot
introduce any serious limitation in the shell theory because in the case of the robust choice of
the reference surface we are able to model general surface geometry such as shell intersections
and shell edges efficiently [25]. Let the reference surface be referred to the convected curvilinear
coordinates �1 and �2, whereas the coordinate �3 is oriented along the unit vector a3 =a3 normal
to the reference surface. As S-surfaces �1, �2 and �3, we choose bottom, middle and top surfaces
of the shell.

Introduce in accordance with Figures 1 and 2 the following notations: r=r(�1,�2) is the position
vector of any point of the reference surface; a� =r,� are the covariant base vectors of the reference
surface; a� are the contravariant base vectors of the reference surface defined by the standard

relation a� ·a� =��
� ; a�� =a� ·a� and a�� =a� ·a� are the covariant and contravariant components of

the metric tensor of the reference surface; a =det[a��] is the determinant of the metric tensor of the

reference surface; b�
� are the mixed components of the curvature tensor defined as b�

� =−a� ·a3,�;
R is the position vector of any point in the shell body given by R=r+�3a3; in particular, position
vectors of S-surfaces are RI =r+z I a3, where z I are the transverse coordinates of S-surfaces
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Figure 1. Geometry of the shell.

Figure 2. Initial and current configurations of the shell in the case of choosing the
midsurface as a reference surface.

defined as

z1 =−d−, z2 = (d+−d−)/2, z3 =d+, (1)

��
� are the mixed components of the 3D shifter tensor expressed as ��

� =��
� −�3b�

� ; in particular,

components of the shifter tensor at S-surfaces are �I�
� =��

� −z I b�
� ; gi are the covariant base vectors

in the shell body given by

g� =R,� =��
�a�, g3 =R,3 =a3, (2)

in particular, base vectors of S-surfaces are

gI
� =RI

,� =�I�
� a�, gI

3 =a3, (3)

gi j are the covariant components of the 3D metric tensor defined as

g�� =g� ·g� =��
��

�
�a��, gi3 =gi ·g3 =�i3, (4)

in particular, components of the metric tensors of S-surfaces are

gI
�� =gI

� ·gI
� =�I�

� �I�
� a��, gI

i3 =gI
i ·gI

3 =�i3, (5)

g =det[gi j ] is the determinant of the 3D metric tensor; gI =det[gI
i j ] are the determinants of the

metric tensors of S-surfaces; �=√
g/a is the determinant of the shifter tensor; �I =

√
gI /a are

the determinants of the shifter tensor at S-surfaces; (. . .),i are the partial derivatives in V with
respect to coordinates �i ; (. . .)|� are the covariant derivatives in � with respect to coordinates ��.
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Here and in the following developments, Greek tensorial indices �, �, � range from 1 to 2; Latin
tensorial indices i , j , m, n range from 1 to 3; indices I , J identify the belonging of any quantity
to the S-surfaces and take values 1, 2 and 3.

3. KINEMATIC DESCRIPTION OF DEFORMED SHELL

Let us introduce the first assumption for the proposed higher order shell theory. The displacement
field is approximated in the thickness direction according to the quadratic law [19]

u=∑
I

L I uI , (6)

where uI (�1,�2) are the displacement vectors of S-surfaces; L I (�3) are the Lagrange polynomials
of degree two expressed as

L1 = 2

h2
(z2 −�3)(z3 −�3),

L2 = 4

h2
(�3 −z1)(z3 −�3),

L3 = 2

h2
(�3 −z1)(�3 −z2)

(7)

such that L I (z J )=1 for J = I and L I (z J )=0 for J �= I . Thus, we deal with the higher order 9-
parameter shell model because nine displacements of S-surfaces are introduced as shell unknowns.

A position vector of the deformed shell is written as

R̄=R+u. (8)

In particular, position vectors of S-surfaces are

R̄I =RI +uI . (9)

The covariant base vectors in the current shell configuration are given by

ḡi = R̄,i =gi +u,i . (10)

In particular, base vectors of S-surfaces of the deformed shell are

ḡI
� = R̄I

,� =gI
� +uI

,�,

ḡI
3 = ḡ3(z I )=a3 +bI ,

(11)

where

b1 = u,3(z1)= 1

h
(−3u1 +4u2 −u3),

b2 = u,3(z2)= 1

h
(−u1 +u3),

b3 = u,3(z3)= 1

h
(u1 −4u2 +3u3).

(12)

Remark 1
The derivative vectors at S-surfaces bI are linearly dependent since

b2 = 1
2 (b1 +b3). (13)

This is because of the fact that the derivative of the displacement vector u,3 varies linearly through
the shell thickness. The latter brings the additional difficulties in describing the rotational rigid-body
modes as we shall see in Section 9.1.
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4. STRAIN–DISPLACEMENT RELATIONSHIPS

The Green–Lagrange strain tensor can be written as

2εi j = ḡi · ḡ j −gi ·g j . (14)

In particular, Green–Lagrange strain components at S-surfaces are

2ε I
i j =2εi j (z

I )= ḡI
i · ḡI

j −gI
i ·gI

j . (15)

Substituting base vectors (11) into strain–displacement relationships (15), one obtains

2ε I
�� = uI

,� ·gI
�+uI

,� ·gI
� +uI

,� ·uI
,�,

2ε I
�3 = uI

,� ·a3 +bI ·gI
� +bI ·uI

,�,

2ε I
33 = 2bI ·a3 +bI ·bI .

(16)

The following step consists in a choice of correct approximation of strains through the thickness
of the shell. It is apparent that the best solution of the problem is to choose the strain distribution,
which is similar to the displacement distribution (6), that is

εi j =
∑
I

L I ε I
i j . (17)

Remark 2
It is necessary to note that the quadratic distribution of the transverse normal strain in the thickness
direction permits one to utilize 3D constitutive laws. In principle, the linear strain distribution is
sufficient for analysis of thin shell structures [1, 2].

Next, we represent displacement vectors of S-surfaces as follows:

uI =uI
i ai . (18)

It is seen that displacement vectors are resolved in the contravariant reference surface basis ai

that allows us to reduce the computational cost of numerical integration in the evaluation of the
stiffness matrix [7, 9, 12, 25]. The derivative vectors at S-surfaces (12) can be represented in a
similar way

bI =�I
i ai , (19)

where

�1
i = 1

h
(−3u1

i +4u2
i −u3

i ), �2
i = 1

h
(−u1

i +u3
i ), �3

i = 1

h
(u1

i −4u2
i +3u3

i ). (20)

The derivatives of displacement vectors of S-surfaces with respect to coordinates �� are written as

uI
,� = uI

i |�ai , (21)

uI
i |� = uI

i,�−� j
i�uI

j , (22)

where � j
i� are the Christoffel symbols defined as

�i
�� =ai ·a�,�, ��

3� =−b�
� , �3

3� =0. (23)

Substituting (3), (19) and (21) into strain–displacement relationships (16), we arrive at a more
convenient form of these relationships

2ε I
�� = �I�

� uI
� |�+�I�

� uI
� |�+ai j u I

i |�uI
j |�,

2ε I
�3 = uI

3|�+�I�
� �I

� +ai j�I
i u I

j |�,
2ε I

33 = 2�I
3 +ai j�I

i �
I
j .

(24)
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Here, it is accepted ai3 =�i3. In orthogonal curvilinear coordinates, the strain–displacement rela-
tionships can be represented in a simpler form (see Appendix A).

Remark 3
The Green–Lagrange strain components (17) are objective, i.e. they represent precisely arbitrarily
large rigid-body shell motions in any convected curvilinear coordinate system. A proof of this
statement can be derived following a technique developed in [7, 20, 26].

5. HU-WASHIZU VARIATIONAL EQUATION FOR 9-PARAMETER
SHELL FORMULATION

A higher order 9-parameter shell theory developed is based on the assumed approximations of
displacements (6) and displacement-dependent strains εi j (17) in the thickness direction. Addi-
tionally, to circumvent shear and membrane locking, we introduce the similar approximation for
the assumed displacement-independent strains ε̂i j , that is

ε̂i j =
∑
I

L I ε̂ I
i j , (25)

where ε̂ I
i j (�

1,�2) are the components of the displacement-independent strain tensor at S-surfaces.
For the sake of simplicity, our discussion is limited to the case of linear elastic materials,

zero body forces and conservative surface loading. To arrive at the assumed stress–strain element
formulation, we consider the Hu-Washizu functional as follows:

JHW =
∫ ∫

�el

∫ d+

−d−

[
1

2
ε̂i j C

i jmn ε̂mn −Si j (ε̂i j −εi j )

]
�
√

a d�1 d�2 d�3

−
∫ ∫

�el

(�3 pi
3u3

i −�1 pi
1u1

i )
√

a d�1 d�2 −Wel, (26)

where Si j are the contravariant components of the second Piola–Kirchhoff stress tensor; Ci jmn are
the contravariant components of the material tensor; pi

1 and pi
3 are the contravariant components

of traction vectors applied to the bottom and top surfaces; Wel is the work done by external loads
acting on the edge boundary surface �el.

Substituting assumed approximations of displacements and strains in the thickness direction (6),
(17) and (25) into the mixed functional (26) and introducing stress resultants

Hi j
I =

∫ d+

−d−
�Si j L I d�3, (27)

and invoking the stationarity of this functional with respect to independent variables, one derives
the following mixed variational equation for the 9-parameter EG solid-shell element formulation:

∑
I

∫ ∫
�̃el

[
�(ÊI )T(HI −

∑
J

DI J ÊJ )+�HT
I (ÊI −EI )−�(EI )THI +�(uI )TpI

]√
a�d�1 d�2

+�Wel =0, (28)

where �̃el = [−1, 1]×[−1, 1] is the biunit square in (�1,�2)-space (see Figure 3); �=det(���/���)
is the determinant of the transformation matrix; uI , pI , EI , ÊI , HI are the column matrices; DI J
are the constitutive stiffness matrices defined as

uI = [uI
1 uI

2 uI
3]T, p1 = [−�1 p1

1 −�1 p2
1 −�1 p3

1]T,

p2 = [0 0 0]T, p3 = [�3 p1
3 �3 p2

3 �3 p3
3]T,

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:1363–1389
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Figure 3. Biunit square in (�1,�2)-space mapped into the reference surface of the EG
solid-shell element in (x1, x2, x3)-space.

EI = [ε I
11 ε I

22 ε I
33 2ε I

12 2ε I
13 2ε I

23]T, ÊI = [ε̂ I
11 ε̂ I

22 ε̂ I
33 2ε̂ I

12 2ε̂ I
13 2ε̂ I

23]T,

HI = [H11
I H22

I H33
I H12

I H13
I H23

I ]T,

DI J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111
I J D1122

I J D1133
I J D1112

I J 0 0

D2222
I J D2233

I J D2212
I J 0 0

D3333
I J D3312

I J 0 0

D1212
I J 0 0

D1313
I J D1323

I J

sym. D2323
I J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where

Di jmn
I J =Ci jmn

∫ d+

−d−
�L I L J d�3. (30)

Recalling that � and L I are the polynomials of degree two, one can carry out exact integration
in (30) by using the four-point Gaussian quadrature rule.

6. MODIFIED ASSUMED NATURAL STRAIN METHOD

The finite element formulation‡ is based on the simple and efficient interpolation of shells via
curved EG 12-node solid-shell elements (Figure 4)

v = ∑
r

Nr vr , v= [u1
1 u1

2 u1
3 u2

1 u2
2 u2

3 u3
1 u3

2 u3
3]T,

vr = [u1
1r u1

2r u1
3r u2

1r u2
2r u2

3r u3
1r u3

2r u3
3r ]T,

(31)

‡From this point, we consider just an orthogonal curvilinear coordinate system introduced in Appendix A and a dot
over all components of displacement vectors and strain tensors of S-surfaces are omitted.
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Figure 4. EG 12-node solid-shell element based on the 9-parameter shell model in the case of choosing
the midsurface as a reference surface.

Nr = 1
4 (1+n1r�

1)(1+n2r�
2),

n1r =
{

1 for r =1,4,

−1 for r =2,3,
n2r =

{
1 for r =1,2,

−1 for r =3,4,

(32)

where Nr (�1,�2) are the bilinear shape functions of the element; vr are the displacement vectors
at element nodes; the index r runs from 1 to 4.

To implement the analytical integration throughout the element, we employ the assumed inter-
polation of natural strains [7, 21, 25]

EI = ∑
r

Nr EI
r , EI

r =EI (P̃r ),

EI
r = [ε I

11r ε I
22r ε I

33r 2ε I
12r 2ε I

13r 2ε I
23r ]T,

(33)

where EI
r are the strain vectors of S-surfaces at element nodes.

Remark 4
The main idea of such approach can be traced back to the ANS method [27, 28] developed by
many scientists for the linear and non-linear displacement-based, hybrid and mixed isoparametric
finite element formulations [1–5, 13, 16–18, 29, 30]. In contrast with above formulations, we treat
the term ‘ANS’ in a broader sense. In our EG solid-shell element formulation, all components of
the Green–Lagrange strain tensor are assumed to vary bilinearly inside the biunit square (Figure 5).
This implies that instead of expected non-linear interpolation the more suitable bilinear ANS
interpolation is used.

Remark 5
In order to circumvent curvature thickness locking for the isoparametric non-linear four-node
solid-shell element, Betsch and Stein [18] proposed to apply the bilinear interpolation (33) for the
transverse normal strain. It is apparent that curvature thickness locking is not related to the EG
four-node solid-shell element because it can handle the arbitrary geometry of surfaces properly.
We advocate the use of the modified ANS method (33) for all components of the Green–Lagrange
strain tensor to implement the efficient analytical integration throughout the element.

The nodal values of strains of S-surfaces according to (A1) and (A8) are written as

2ε I
��r = 1

cI
�r

	I
��r + 1

cI
�r

	I
��r + 1

cI
�r cI

�r

∑
i

	I
i�r	

I
i�r ,

2ε I
�3r = �I

�r + 1

cI
�r

	I
3�r + 1

cI
�r

∑
i

�I
ir	

I
i�r ,

2ε I
33r = 2�I

3r +∑
i

�I
ir�

I
ir ,

(34)
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Figure 5. Biunit square in (�1,�2)-space mapped into the reference surface of the EG solid-shell element
in (x1, x2, x3)-space in the case of orthogonal coordinates ��.

where cI
�r =1+k�r z I are the nodal values of the shifter tensor at S-surfaces. Introducing further a

displacement vector of the shell element

U= [vT
1 vT

2 vT
3 vT

4 ]T (35)

and using (A6) and (A9), one derives the following keynote presentation for the strain parameters:

	I
i�r = (KI

i�r )TU, �I
ir = (KI

i3r )TU, (36)

whereKI
i jr are the constant inside the element column matrices of order 36×1 given in Appendix B.

The use of (33), (34) and (36) yields

EI
r =BI

r U+AI
r (U)U, (37)

where BI
r and AI

r (U) are the nodal matrices of order 6×36 corresponding to the linear and
non-linear strain–displacement transformations defined as

BI
r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cI
1r )−1(KI

11r )T

(cI
2r )−1(KI

22r )T

(KI
33r )T

(cI
2r )−1(KI

12r )T +(cI
1r )−1(KI

21r )T

(KI
13r )T +(cI

1r )−1(KI
31r )T

(KI
23r )T +(cI

2r )−1(KI
32r )T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AI
r (U)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UTPI
11r

UTPI
22r

UTPI
33r

UTPI
12r

UTPI
13r

UTPI
23r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where PI
i jr are the constant throughout the element symmetric matrices of order 36×36 given by

PI
i jr = 1

2

∑
m
KI

mir (KI
m jr )T for i = j,

PI
i jr = 1

2

∑
m

[KI
mir (KI

m jr )T +KI
m jr (KI

mir )T] for i< j.

(39)
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From the computational point of view it is convenient to rewrite the ANS interpolation (33) as
follows:

EI = ∑
r1,r2

(�1)r1 (�2)r2EI r1r2,

EI r1r2 = BI r1r2U+AI r1r2 (U)U.

(40)

Here and in the following developments, the indices r1, r2 take the values 0 and 1, and the additional
notations are introduced

BI 00 = 1
4 (BI

1 +BI
2 +BI

3 +BI
4), BI 01 = 1

4 (BI
1 +BI

2 −BI
3 −BI

4),

BI 10 = 1
4 (BI

1 −BI
2 −BI

3 +BI
4), BI 11 = 1

4 (BI
1 −BI

2 +BI
3 −BI

4).
(41)

The matrices AI r1r2 (U) are written in a similar way by using nodal matrices AI
r (U).

7. HYBRID STRESS–STRAIN METHOD

To improve the computational efficiency of low-order EG solid-shell elements, a hybrid method
can be applied. This method is based on the robust finite element formulation pioneered by Pian
[31]. In such a formulation the displacements on the element boundary are assumed to provide
displacement compatibility between elements, whereas internal stresses are assumed so as to satisfy
the differential equilibrium equations. The Pian’s work was originally based upon the principle of
the stationary complementary energy. Later, an alternative assumed stress method was proposed by
applying the Hellinger–Reissner variational principle that simplifies the evaluation of the element
stiffness matrix [32].

However, we do not use herein this terminology referring to Gallagher’s proposal (see paper
[33]), where it is said that ‘the hybrid method in structural mechanics is defined at the one which is
formulated by multivariable variational functional, yet the resulting matrix equations consist of only
the nodal values of displacements as unknown’. Independently, the hybrid strain [10, 11, 34] and
hybrid stress–strain [22] methods were developed. The former is based on the modified Hellinger–
Reissner functional in which displacements and strains are utilized as fundamental shell unknowns,
whereas the latter departs from the Hu-Washizu functional depending on displacements, stresses
and strains.

Thus, to avoid shear and membrane locking and have no spurious zero energy modes [7, 21, 24],
the assumed displacement-independent strains and stress-resultant fields throughout the element
are invoked

ÊI = ∑
r1+r2<2

(�1)r1 (�2)r2Qr1r2ÊI r1r2,

ÊI 00 = [ε̂ I 00
11 ε̂ I 00

22 ε̂ I 00
33 2ε̂ I 00

12 2ε̂ I 00
13 2ε̂ I 00

23 ]T,

ÊI 01 = [ε̂ I 01
11 ε̂ I 01

33 2ε̂ I 01
13 ]T, ÊI 10 = [ε̂ I 10

22 ε̂ I 10
33 2ε̂ I 10

23 ]T

(42)

and

HI = ∑
r1+r2<2

(�1)r1 (�2)r2Qr1r2Hr1r2
I ,

H00
I = [H1100

I H2200
I H3300

I H1200
I H1300

I H2300
I ]T

H01
I = [H1101

I H3301
I H1301

I ]T, H10
I = [H2210

I H3310
I H2310

I ]T,

(43)
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where Qr1r2 are the projective matrices defined as

Q00 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q01 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

Substituting interpolations (31), (40), (42) and (43) into the Hu-Washizu variational equation (28)
and integrating analytically throughout the element, one obtains the elemental equilibrium equations
of the developed finite element formulation

ÊI r1r2 = (Qr1r2 )T[BI r1r2 +AI r1r2 (U)]U,

Hr1r2
I =∑

J
(Qr1r2 )TDI J Qr1r2ÊJr1r2 for r1 +r2<2,

∑
r1+r2<2

∑
I

1

3r1+r2
[BI r1r2 +2AI r1r2 (U)]TQr1r2Hr1r2

I =F,

(45)

where F is the element-wise surface traction vector. Note that a product
√

a� in variational
equation (28) is equal to �1�2 A1 A2 (see Appendix A and Figure 5) and it is evaluated at the
element center. This is because of choosing the midsurface as a reference surface and employing
the orthogonal curvilinear coordinates.

8. INCREMENTAL TOTAL LAGRANGIAN FORMULATION

Up to this moment, no incremental arguments are needed in the total Lagrangian formulation.
The incremental displacements, strains and stress resultants are needed for solving non-linear
equations (45) on the basis of the Newton–Raphson method. Further, the left superscripts t and
t +�t indicate in which configuration at time t or time t +�t a quantity occurs. Then, in accordance
with this agreement we have

t+�t U = t U+�U, t+�t F= t F+�F,

t+�t ÊI r1r2 = t ÊI r1r2 +�ÊI r1r2, t+�t Hr1r2
I = t Hr1r2

I +�Hr1r2
I for r1 +r2<2,

(46)

where �U, �F, �ÊI r1r2 and �Hr1r2
I are the incremental variables.

Substituting (46) into equilibrium equations (45) and taking into account the fact that external
loads and second Piola–Kirchhoff stresses constitute the self-equilibrated system in a configuration
at time t , one can obtain the incremental equations

�ÊI r1r2 = (Qr1r2 )T[t MI r1r2 +AI r1r2 (�U)]�U,

�Hr1r2
I =∑

J
D̄r1r2

I J �ÊJr1r2 for r1 +r2<2,

∑
r1+r2<2

∑
I

1

3r1+r2
{2[AI r1r2 (�U)]TQr1r2 t Hr1r2

I +[t MI r1r2 +2AI r1r2 (�U)]TQr1r2�Hr1r2
I }=�F,

(47)

where

t MI r1r2 =BI r1r2 +2AI r1r2 (t U), D̄r1r2
I J = (Qr1r2 )TDI J Qr1r2 for r1 +r2<2. (48)
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Owing to the existence of non-linear terms in incremental equations (47), the Newton–Raphson
iteration process should be employed

�U[k+1] = �U[k] +�U[k], �ÊI r1r2[k+1] =�ÊI r1r2[k] +�Ê
I r1r2[k]

,

�Hr1r2[k+1]
I = �Hr1r2[k]

I +�Hr1r2[k]
I , k =0,1, . . . , N I,

(49)

where NI is the number of iterations. As a result, the linearized equilibrium equations are
expressed as

�Ê
I r1r2[k] −(Qr1r2 )Tt LI r1r2[k]�U[k] = (Qr1r2 )T[t LI r1r2[k] −AI r1r2 (�U[k])]�U[k] −�ÊI r1r2[k],

�Hr1r2[k]
I −∑

J
D̄r1r2

I J �Ê
Jr1r2[k] =0 for r1 +r2<2,

∑
r1+r2<2

∑
I

1

3r1+r2
{2[AI r1r2 (�U[k])]TQr1r2 (t Hr1r2

I +�Hr1r2[k]
I )+(t LI r1r2[k])TQr1r2�Hr1r2[k]

I }

=�F− ∑
r1+r2<2

∑
I

1

3r1+r2
{2[AI r1r2 (�U[k])]TQr1r2 t Hr1r2

I +(t LI r1r2[k])TQr1r2�Hr1r2[k]
I },

(50)

where

t LI r1r2[k] =BI r1r2 +2AI r1r2 (t U+�U[k]) for r1 +r2<2. (51)

Eliminating incremental displacement-independent strains �Ê
I r1r2[k]

and stress resultants
�Hr1r2[k]

I from (50) and introducing symmetric matrices

Dr1r2
I J = Qr1r2D̄r1r2

I J (Qr1r2 )T =Qr1r2 (Qr1r2 )TDI J Qr1r2 (Qr1r2 )T for r1 +r2<2, (52)

RI r1r2 (HI ) = ∑
i� j

H i j
I P

I r1r2
i j for r1 +r2<2, (53)

PI 00
i j = 1

4 (PI
i j1 +PI

i j2 +PI
i j3 +PI

i j4), PI 01
i j = 1

4 (PI
i j1 +PI

i j2 −PI
i j3 −PI

i j4),

PI 10
i j = 1

4 (PI
i j1 −PI

i j2 −PI
i j3 +PI

i j4)
(54)

one derives a system of linearized element equations

KT�U[k] =�F[k], (55)

where KT =KD +KH is the tangent stiffness matrix; �F[k] is the right-hand side vector given by

KD = ∑
r1+r2<2

1

3r1+r2

∑
I,J

(t LI r1r2[k])TDr1r2
I J

t LJr1r2[k], (56)

KH = 2
∑

r1+r2<2

1

3r1+r2

∑
I

RI r1r2 [Qr1r2 (t Hr1r2
I +�Hr1r2[k]

I )], (57)

�F[k] = �F− ∑
r1+r2<2

1

3r1+r2

{∑
I,J

(t LI r1r2[k])TDr1r2
I J [t LJr1r2[k] −AJr1r2 (�U[k])]

+2
∑
I

RI r1r2 (Qr1r2 t Hr1r2
I )

}
�U[k]. (58)

To find the tangent stiffness matrix, the useful matrix transformation

[AI r1r2 (U)]THI =RI r1r2 (HI )U for r1 +r2<2 (59)

should be invoked.
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As expected, the tangent stiffness matrix is symmetric. This is due to the fact that both matrices
KD and KH are symmetric. The proof of symmetry of the latter matrix follows from notations
(29), (39), (53) and (54).

Remark 6
For computing the mode stress-resultant vectors from (57), we employ the advanced finite element
technique, that is

�Hr1r2[k]
I = ∑

J
D̄r1r2

I J �ÊJr1r2[k] for r1 +r2<2, (60)

�ÊI r1r2[k] = (Qr1r2 )T[t MI r1r2�U[k] +2AI r1r2 (�U[k−1])�U[k−1]

+AI r1r2 (�U[k−1])�U[k−1]] for r1 +r2<2, (61)

where �U[k−1] =�U[k] −�U[k−1]. These formulas hold for k�1, whereas at the beginning of each
iteration process one has to set

�U[0] =0 and �ÊI r1r2[0] =0.

The proposed incremental approach allows the use of load increments, which are much larger than
possible with standard displacement-based EG shell element formulations [6, 12]. This is because
of the fact that an additional load vector due to compatibility mismatch (61) at the kth iteration step
is present in linearized equilibrium equations (55) and disappears only at the end of the iteration
process as discussed, e.g. in [11, 21, 25, 35, 36].

Remark 7
It is necessary to note that the elemental matrices (56)–(58) require only direct substitutions, i.e.
no expensive matrix inversion is needed to derive them. This is unusual for the isoparametric
hybrid/mixed finite element formulations [10, 11, 13, 16]. Furthermore, all element matrices are
evaluated by using analytical integration throughout the element. Thus, our EG solid-shell element
formulation is economical and efficient compared to the conventional isoparametric solid-shell
element formulations because it additionally permits the use of coarser mesh configurations.

Remark 8
It is of extreme interest to notice that the nodal displacement vectors u2

r = [u2
1r u2

2r u2
3r u2

4r ]T

corresponding to the inner S-surface can be statically condensed out at the element level to reduce
the number of degrees of freedom to 24. Therefore, such an approach does not introduce any
additional degrees of freedom at the global level and is very similar to the 6-parameter solid-shell
element formulation [10–18]. However, the reduced number of degrees of freedom restricts the
possibility of studying some 3D problems for thick shells with specific boundary conditions at the
shell edges as discussed in Section 9.5. Thus, we do not utilize such a technology at this stage of
our finite element developments.

The equilibrium equations (55) for each element are assembled by the usual technique to form
the global equilibrium equations. These equations have to be performed until the required accuracy
of the solution can be obtained. To realize the above, the displacement-based convergence criterion
is employed

‖U[k+1]
G −U[k]

G ‖<ε‖U[k]
G ‖, (62)

where ‖•‖ denotes the Euclidean norm; UG is the global displacement vector; ε is the prescribed
tolerance.
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9. GEOMETRICALLY LINEAR ANALYSIS

9.1. On the selection of displacement-independent strain field

The assumed strain field (42) is selected such that the 12-node finite element developed will be
free of locking and kinematically stable. To circumvent a locking phenomenon, the assumed strain
field should be chosen to be as simple as possible. One can suppose that the simplest element
approximation for the transverse normal strain

ε̂ I
33 = ε̂ I 00

33 (63)

is sufficient for this purpose. However, the use of 10 assumed strain parameters for each S-surface
yields two spurious kinematic modes. This fact is addressed below. Much better results one can
achieve employing a linear interpolation for the transverse normal strain (42), that is

ε̂ I
33 = ε̂ I 00

33 +�1ε̂ I 10
33 +�2ε̂ I 01

33 . (64)

As a result, 12 assumed strain parameters are introduced for each S-surface. It seems to be
excessive recalling about three displacement degrees of freedom per node. Fortunately, there exist
six dependent strain modes exactly, which provide a correct rank of the element matrix.

These dependent modes can be determined analytically in the case of flat element geometry and
expressed as

ε̂100
33 −2ε̂200

33 + ε̂300
33 = 0, ε̂110

33 −2ε̂210
33 + ε̂310

33 =0, ε̂101
33 −2ε̂201

33 + ε̂301
33 =0,

ε̂101
13 −2ε̂201

13 + ε̂301
13 = ε̂110

23 −2ε̂210
23 + ε̂310

23 ,

ε̂100
13 −2ε̂200

13 + ε̂300
13 = 1

8 h(−ε̂110
33 + ε̂310

33 ), ε̂100
23 −2ε̂200

23 + ε̂300
23 = 1

8 h(−ε̂101
33 + ε̂301

33 ).

(65)

Indeed, the use of the bilinear interpolation for the displacement field

uI
i =uI 00

i +�1uI 10
i +�2uI 01

i +�1�2uI 11
i (66)

and strain–displacement relationships (A6), (A8) and (A9), which can be written for the transverse
strain components as

2ε I 00
13 = uI 10

3 +�I 00
1 , 2ε I 01

13 =uI 11
3 +�I 01

1 ,

2ε I 00
23 = uI 01

3 +�I 00
2 , 2ε I 10

23 =uI 11
3 +�I 10

2 ,

ε
I r1r2
33 = �I r1r2

3 , �1r1r2
i = 1

h
(−3u1r1r2

i +4u2r1r2
i −u3r1r2

i ),

�2r1r2
i = 1

h
(−u1r1r2

i +u3r1r2
i ), �3r1r2

i = 1

h
(u1r1r2

i −4u2r1r2
i +3u3r1r2

i ) for r1 +r2<2

(67)

leads to the following coupling equations:

ε100
33 −2ε200

33 +ε300
33 =0, ε110

33 −2ε210
33 +ε310

33 =0, ε101
33 −2ε201

33 +ε301
33 =0,

ε101
13 −2ε201

13 +ε301
13 =ε110

23 −2ε210
23 +ε310

23 ,

ε100
13 −2ε200

13 +ε300
13 = 1

8 h(−ε110
33 +ε310

33 ), ε100
23 −2ε200

23 +ε300
23 = 1

8 h(−ε101
33 +ε301

33 ).

(68)

Recalling the element equations (40) and (45) for the transverse strain components

ε̂ I 00
i3 = ε I 00

i3 , ε̂ I 01
13 =ε I 01

13 , ε̂ I 10
23 =ε I 10

23 ,

ε̂ I 01
33 = ε I 01

33 , ε̂ I 10
33 =ε I 10

33

(69)

one can observe that coupling equations (65) and (68) are equivalent.
Coupling equations (65) play a central role in the proposed hybrid stress–strain finite element

formulation because they imply that only 30 assumed strain modes are independent of 36 ones
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introduced by (42). Therefore, the element stiffness matrix has six, and only six, zero eigenvalues as
required for satisfaction of the general rigid-body motion representation. Unfortunately, last three
coupling equations (65) can be fulfilled only approximately for the general shell geometry. Such a
defect reduces the accuracy of calculating the eigenvalues corresponding to rotational rigid-body
modes but has no effect on the performance of the EG 12-node solid-shell element developed.

9.2. Square plate supported at four corners

A square plate supported at four corners and subjected to uniform pressure is considered to assess
the ability of the proposed EG solid-shell element EG9P4 to model rigid-body motions. The
geometrical and material characteristics of the plate are presented in Figure 6.

Owing to symmetry of the problem, only one quarter of the plate is discretized by regular
meshes of EG9P4 elements. Figure 7 shows the variation of the transverse midplane displacement
u2

3 along the centerline AB employing 8×8 meshes at each S-surface and a comparison with
Reissner–Mindlin plate elements [37, 38]. Table I lists the results of the convergence study due to
mesh refinement by using a transverse displacement at the central point u2

3(0,0) compared with the
plate element [39] in which the Kirchhoff constraints are fulfilled at discrete points. One can see
that the EG9P4 element represents rigid-body plate motions properly and it is free from locking.

In order to get more information concerning zero energy modes, the eigenvalues for a single
EG9P4 element are listed in Table II. It is seen that six zero energy modes are observed. All other

Figure 6. Square plate supported at four corners with a =12, h =0.375,
E =4.3×105, 
=0.38 and q =0.03125.

Figure 7. Variation of the transverse displacement along the centerline.
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Table I. Convergence results for a square plate using a transverse displacement u2
3(0, 0).

Element 8×8 16×16 24×24 48×48 96×96

Batoz [39] 0.11914 0.11960 0.11969 0.11974 0.11975
EG9P4 0.11863 0.11998 0.12048 0.12083 0.12107

Table II. Eigenvalues for the square plate supported at four corners (Plate 1), circular plate supported at
two points (Plate 2), spherical shell under inner pressure (Shell 1), pinched cylindrical shell (Shell 2) and

cylindrical shell under end stretching (Shell 3).

Number 1 2 3 4 5 6 7 . . . 36

Plate 1 4.66E−10 1.02E−9 4.04E−9 1.35E−8 1.40E−8 4.24E−8 2.53E+0 . . . 6.18E+8
Plate 2 7.99E−10 4.21E−9 5.49E−9 3.53E−6 5.29E−6 6.74E−6 1.30E+2 . . . 2.28E+11
Shell 1 8.69E−10 3.35E−9 4.41E−9 8.53E−7 1.18E−6 2.37E−6 1.57E+1 . . . 9.23E+10
Shell 2 3.78E−7 9.79E−7 4.90E−6 5.88E−6 8.99E−6 1.53E−5 9.94E+0 . . . 3.81E+11
Shell 3 2.29E−9 3.10E−8 5.49E−8 7.85E−8 1.17E−7 3.19E−7 2.02E+4 . . . 3.39E+9

Figure 8. Circular plate supported at two points with R=10, r=0.001, h=0.1, E=105, 
=0.25 and F =1.

deformation modes are associated with nonzero eigenvalues. It should be mentioned that compu-
tations were performed on a standard PC employing the 16-digit calculation.

9.3. Circular plate supported at two points

Consider a circular plate of the radius Rwith a small rigid circular inclusion of the radius rat its
center. The plate is supported at two diametrically opposite points and subjected to a concentrated
load F at its center. Such a problem is an excellent test to verify again the ability of the EG9P4
element to model rigid-body motions and assess the analytical integration schemes developed. This
is because of the fact that we utilize just elemental nodes to evaluate the stiffness matrix, i.e. no
Gauss sampling points are employed and we deal here with a shell of revolution with geometrical
parameters

A1 =1, A2 =r +�1, k1 =k2 =0, �1 ∈ [0, R−r ]. (70)

Owing to symmetry of the problem, only one quarter of the plate is discretized by uniform meshes
shown in Figure 8. Table III lists results of the convergence study through using two values of the
transverse displacement u2

3(0,0) and u2
3(R−r,0) compared with the analytical solution [40] of the

Kirchhoff plate theory (CPT). Additionally, we represent in Table II the eigenvalues for a single
EG9P4 element. It is seen that in this specific shell problem there exist six zero energy modes as
in a previous flat shell example but the accuracy of calculating the eigenvalues corresponding to
rotational rigid-body modes is worse; see on this subject Section 9.1.
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Table III. Convergence results for a circular plate using the transverse midsurface
displacement ū2

3 = Du2
3/F R2.

Mesh 2×2 4×4 8×8 16×16 32×32 CPT [40]

ū2
3(0,0) 0.0999 0.1136 0.1162 0.1167 0.1168 0.116

ū2
3(R−r,0) 0.0931 0.1117 0.1164 0.1177 0.1180 0.118

Figure 9. Spherical shell with R =10, h =0.1, ϑ∗ =89.98◦, E =105, 
=0.3 and q =1.

Table IV. Convergence results for a spherical shell using the transverse displacement ũ3 =103u3
3(0,0) and

normal strains ε̃i i =104ε3
i i (0,0) at the outer surface.

Mesh 2×1 4×1 8×1 16×1 32×1 64×1 Elasticity [41]

ũ3 3.750 3.533 3.482 3.469 3.466 3.465 3.465
ε̃11 3.805 3.515 3.464 3.452 3.449 3.448 3.448
ε̃22 3.804 3.515 3.464 3.452 3.449 3.448 3.448
−ε̃33 3.341 3.012 2.969 2.958 2.956 2.955 2.955

9.4. Spherical shell under inner pressure

Next, we consider a spherical shell with 0.02◦ hole at the top subjected to inner pressure q . This
problem is also a good benchmark to test the proposed analytical integration technique and confirm
that the finite element formulation developed is able to reproduce constant stress–strain states. To
compare the results derived, we invoke Lame’s solution [41], which can be written as

ur = qa3

E(b3 −a3)

[
(1−2
)r +(1+
)

b3

2r2

]
, εr = dur

dr
,

ε� = ε� = ur

r
, a = R− 1

2
h, b= R+ 1

2
h,

(71)

where r is the radial distance from a point to the origin; R is the radius of the midsurface.
Owing to symmetry, we consider a part of the shell, which is modeled by regular meshes

depicted in Figure 9. Table IV and Figure 10 display the results of the convergence study due
to mesh refinement. As can be seen, the EG9P4 element passes a constant strain test even for
coarse meshes. Table II lists the eigenvalues for a single EG9P4 element. One can observe that
there are again six zero energy modes exactly as in a previous shell example but the accuracy of
computations is slightly better.

9.5. Pinched cylindrical shell

To illustrate the capability of the proposed solid-shell element EG9P4 to overcome shear and
membrane locking and to compare it with high performance isoparametric four-node shell elements
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Figure 10. Variation of normalized strains at the inner surface along a meridian �2 =0: (a) meridional
strain (ε1

11)Norm and (b) transverse normal strain (ε1
33)Norm.

Figure 11. Pinched cylindrical shell with R =300, L =300, h =3, E =3×106, 
=0.3 and F =1.

Table V. Normalized transverse displacement at the load point.

EG shell elements Isoparametric shell elements

Mesh EG9P4 EG7P4 [7] EG6P4 [15] EG5P4 [46] Bathe [29] Hughes [42] Liu [43] Simo [44]

4×4 0.8520 0.8448 0.8900 0.8875 0.370 0.373 0.469 0.399
8×8 0.9166 0.9121 0.9412 0.9390 0.740 0.747 0.791 0.763
16×16 0.9746 0.9720 0.9861 0.9836 0.930 0.935 0.946 0.935

[29, 42–44], we consider one of the most demanding standard tests in which shear locking is much
greater than membrane locking [45]. A short cylindrical shell supported by two rigid diaphragms at
the ends is loaded by two opposite concentrated loads in its middle section as depicted in Figure 11.

Owing to symmetry of the problem, only one octant of the shell is modeled with regular meshes.
Table V lists the normalized transverse displacement under the applied load and a comparison with
aforementioned 5-parameter isoparametric four-node shell elements and 5-, 6- and 7-parameter
EG four-node shell elements [7, 15, 46]. The displacements are normalized with respect to the
analytical solution −1.8248×10−5 [47] based on the Kirchhoff–Love shell theory. It is seen that
all EG shell elements exhibit an excellent performance even for coarse mesh configurations. The
eigenvalues of the single EG9P4 element are listed in Table II.
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Figure 12. Two-layer cylindrical shell with R =100, L =50, h1 =h2 =10, EL =25ET,
ET =106, GLT =0.5ET, GTT =0.2ET, 
LT =
TT =0.25: (a) loading condition A; (b) loading

condition B; and (c) loading condition C.

9.6. Cylindrical shell under end stretching

To evaluate the transverse normal deformation response, we consider a thick two-layer cylindrical
shell under end stretching [48]. The material and geometrical characteristics of the shell are
presented in Figure 12 and a ply sequence is taken to be [30/−30]. A shell is subjected to axial
line loads F I , which are distributed along the circles belonging S-surfaces such that the resulting
load equals F precisely. To investigate this problem more carefully, we consider three types of
loading, namely

F1 = F3 = F/2, (72A)

F1 = F2 = F3 = F/3, (72B)

F2 = F. (72C)

It should be noticed that only first type of loading (72A) could be realized within the framework
of 6- and 7-parameter shell descriptions.

Owing to symmetry of the problem, only half of the shell is modeled with 32 axisymmetric
EG9P4 elements. Figure 13 shows displacements of the bottom and top surfaces ū1

i and ū3
i for

all types of loading, where ū I
i =10ET RuI

i /F . It is interesting to note that a shell behavior is
unusual to the region 0��1<40 for loading conditions (72A) and (72B) since the thickness change
�h =u3

3 −u1
3 is positive. This means that a shell thickness increases. On the contrary, the use of

loading condition (72C) leads to increasing the shell thickness in the end region 40<�1�50.

10. GEOMETRICALLY NON-LINEAR ANALYSIS

The performance of the proposed EG 12-node solid-shell element EG9P4 is evaluated by compared
with non-linear isoparametric shell elements extracted from the literature. All our results are
compared with those based on using identical node spacing, the same convergence criterion (62) and
tolerance ε=10−4. In each numerical example, NStep denotes the number of load steps employed
to equally divide the maximum load, whereas NIter stands for the total number of iterations.

10.1. Slit ring plate under line load

This example is considered in the literature to test non-linear finite element formulations for thin-
walled shell structures and has been extensively used by many investigators. The ring plate is
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Figure 13. Displacements of external surfaces of the angle-ply cylindrical shell: (a) axial ū I
1, (b) circum-

ferential ū I
2 and (c) transverse ū I

3; results on the bases of loading conditions (72A), (72B) and (72C) are
represented through curves marked by ◦, � and �.

Figure 14. Slit ring plate with r =6, R =10, h =0.03, E =2.1×107, 
=0 and P =0.8: (a) geometry and
(b) deformed configuration (modeled by 6×30 mesh).

subjected to a line load P applied at its free edge of the slit, whereas the other edge is fully
clamped (Figure 14).

The displacements at points A and B of the plate, presented in Table VI and Figure 15, have been
found by employing uniform meshes of EG9P4 elements. A comparison with EG four-node solid-
shell elements [7] and ABAQUS S4R element [49] is also given. As can be seen, extremely coarse
mesh configurations with the EG9P4 element can be used because the 2×4 mesh already yields
91% of the reference solution provided by the S4R element. Note also that in this case only six
Newton iterations are needed to find a converged solution with the chosen criterion and tolerance.
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Table VI. Midplane displacements at points A and B of the slit ring plate using
criterion (62) with tolerance of 10−4.

Element EG9P4 EG9P4 EG9P4 EG9P4 EG7P4 [7] EG6P4 [7] S4R [49]
Mesh 2×4 4×8 16×32 10×80 10×80 10×80 10×80

u3(A) 12.739 12.574 13.670 13.760 13.765 13.760 13.891
u3(B) 16.025 16.092 17.302 17.398 17.402 17.398 17.528
NStep/NIter 1/6 1/8 1/10 1/11 1/13 1/12 640/346a

a NIter = 346 in the case of using 67 non-uniform load increments [49].

Figure 15. Midplane displacements of the slit ring plate (modeled by 10×80 mesh).

Figure 16. Pinched hemispherical shell with R =10, h =0.04, hole=18◦, E =6.825×107, 
=0.3,
P =100 f and f =4: (a) geometry and (b) deformed configuration (modeled by 16×16 mesh).

10.2. Pinched hemispherical shell

To investigate the capability of the proposed EG solid-shell element EG9P4 to model the inexten-
sional bending and large rigid-body motions, we consider one of the most demanding non-linear
tests. A hemispherical shell with 18◦ hole at the top is loaded by two pairs of opposite forces on
the equator. The geometrical and material data of the problem are shown in Figure 16.

Owing to symmetry, only one quarter of the shell is modeled with regular meshes of EG9P4
elements. Table VII lists midsurface displacements under applied loads employing EG solid-shell
elements and ABAQUS S4R element [49]. One can observe that the EG9P4 element is a bit stiff
compared with the EG6P4 element because of utilizing the complete 3D constitutive equations. At
the same time it performs excellently for coarse meshes. For example, a very coarse mesh 4×4
yields 86% of the reference displacement value at point A provided by the S4R element. Figure 17
displays load–displacement curves compared with those derived by the 16×16 mesh of S4R shell
elements. It is seen that the results agree closely.
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Table VII. Midsurface displacements at points A and B of the pinched hemispherical shell
using criterion (62) with tolerance of 10−4.

Element EG9P4 EG9P4 EG9P4 EG7P4 [7] EG6P4 [7] S4R [49]
Mesh 4×4 8×8 16×16 16×16 16×16 16×16

u3(B) 3.2609 3.9526 4.0509 4.0545 4.0557 4.067
−u3(A) 7.0549 8.1047 8.1322 8.1232 8.1451 8.178
NStep/NIter 1/7 1/7 1/7 1/7 1/7 40/136a

a NIter = 136 in the case of using 27 non-uniform load increments [49].

Figure 17. Midsurface displacements of the pinched hemispherical shell (modeled by 16×16 mesh).

Figure 18. Pinched three-layer hyperbolic shell with r =7.5, R =15, L =20, h =0.04, h0 =h/3,
EL =4×107, ET =106, GLT =GTT =6×105, 
LT =
TT =0.25, P =80 f and f =5: (a) geometry and

(b) deformed configuration for the [90/0/90] ply orientation.

10.3. Pinched three-layer hyperbolic shell

Further, we consider cross-ply hyperbolic shells under two pairs of opposite forces. The geometrical
and material data of the three-layer hyperbolic shell are shown in Figure 18. Two cross-ply
hyperbolic shells with different ply orientations [0/90/0] and [90/0/90] but the same ply thickness
[h0/h0/h0] are investigated, where 0 and 90◦ are referred to the circumferential and meridional
directions as accepted in this benchmark.

Owing to symmetry of the problem, only one octant of the shell is discretized with uniform
meshes. Tables VIII and IX list displacements derived by using different EG four-node solid-shell
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Table VIII. Midsurface displacements at points A and C of the [0/90/0] hyperbolic shell using
criterion (62) with tolerance of 10−4.

Element EG9P4 EG9P4 EG9P4 EG9P4 EG7P4 [7] EG6P4 [7]
Mesh 4×4 8×8 16×16 32×32 32×32 32×32

−uy(A) 2.6075 3.3194 3.4783 3.5232 3.5217 3.5215
uy(C) 2.2572 2.5515 2.5252 2.5191 2.5185 2.5179
NStep/NIter 1/7 1/7 1/7 1/7 1/7 1/8

Table IX. Midsurface displacements at points A and C of the [90/0/90] hyperbolic shell using
criterion (62) with tolerance of 10−4.

Element EG9P4 EG9P4 EG9P4 EG9P4 EG7P4 [7] EG6P4 [7]
Mesh 4×4 8×8 16×16 32×32 32×32 32×32

−uy(A) 3.1160 4.7742 5.6409 6.1325 6.1294 6.1330
uy(C) 2.5376 2.9158 2.8955 2.6922 2.6932 2.6914
NStep/NIter 1/10 2/14 2/20 5/26 5/25 5/29

Figure 19. Midsurface displacements of the pinched hyperbolic shell for ply orientations of: (a) [0/90/0]
and (b) [90/0/90] (modeled by 28×28 mesh).

elements, where ux and uy denote the displacements of the midsurface in the x1- and x2-directions.
One can observe that the EG9P4 element performs excellently because only one load step and
seven Newton iterations are needed to derive a converged solution for the [0/90/0] ply orientation.
It is interesting to note that the EG9P4 element is the best performer in this hyperbolic shell
example in spite of using 3D constitutive equations. The displacements in Figure 19 are compared
additionally with the results [50], which were found employing the 28×28 mesh of finite rotation
four-node degenerated-shell elements.

11. CONCLUSIONS

The simple and efficient hybrid stress–strain EG 12-node solid-shell element EG9P4 has been
developed for analyses of homogeneous and laminated shells undergoing finite rotations. The
finite element formulation is based on the non-linear strain–displacement relationships, which are
invariant under arbitrarily large rigid-body shell motions in a convected curvilinear coordinate
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system. This is due to the proposed 9-parameter shell model in which displacement vectors of
S-surfaces are introduced and resolved in the reference surface frame. The developed EG solid-
shell element formulation is free of assumptions of small displacements, small rotations and small
loading steps. This formulation allows one to employ much larger load increments than the existing
EG shell element formulations, to utilize the complete 3D constitutive equations and to analyze
some 3D problems for thick composite shells with specific boundary conditions at the shell edges.

The tangent stiffness matrix is evaluated by employing 3D analytical integration and the explicit
presentation of this matrix is given. The latter is unusual for the non-linear EG shell element
formulation. It is noteworthy that the EG9P4 element permits the use of coarse meshes even in
shell problems with extremely large displacements and rotations and it is insensitive to the number
of load increments.

APPENDIX A

Herein, we briefly summarize the strain–displacement relationships for one important particular
case. If the orthogonal curvilinear coordinates are referred to the lines of principal curvatures of
the reference surface � then

a� = A�e�, a3 =e3,

b1
1 = −k1, b2

2 =−k2, b2
1 =b1

2 =0,

�I 1
1 = cI

1 =1+k1z I , �I 2
2 =cI

2 =1+k2z I , �I 2
1 =�I1

2 =0,

(A1)

where ei are the orthonormal base vectors of the reference surface; A� and k� are the coefficients
of the first fundamental form and principal curvatures of the reference surface. The use of (A1) in
(3) leads to

gI
� = A�cI

�e�, gI
3 =e3. (A2)

The displacement vectors and derivatives with respect to coordinate �3 at S-surfaces can be
represented as follows:

uI = ∑
i

u̇ I
i ei , (A3)

bI = ∑
i

�̇
I
i ei , (A4)

where u̇ I
i and �̇

I
i are the components of vectors uI and bI in the orthonormal reference surface

frame ei . Taking into account (A3) and well-known formulas for the derivatives of orthonormal
vectors ei with respect to coordinates �� (see, e.g. [14, 25]), one derives

1

A�
uI

,� =∑
i

	I
i�ei , (A5)

where

	I
�� = 1

A�
u̇ I

�,�+ B�u̇ I
�+k�u̇ I

3 for � �=�,

	I
�� = 1

A�
u̇ I

�,�− B�u̇ I
� for � �=�,

	I
3� = 1

A�
u̇ I

3,�−k�u̇ I
�, B� = 1

A� A�
A�,� for � �=�.

(A6)
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The use of (A2) in strain–displacement relationships (16) yields

2ε̇ I
�� = 1

A�cI
�

uI
,� ·e�+ 1

A�cI
�

uI
,� ·e�+ 1

A� A�cI
�cI

�

uI
,� ·uI

,�,

2ε̇ I
�3 = bI ·e�+ 1

A�cI
�

uI
,� ·e3 + 1

A�cI
�
bI ·uI

,�,

2ε̇ I
33 = 2bI ·e3 +bI ·bI ,

(A7)

where ε̇ I
i j are the components of the Green–Lagrange strain tensor at S-surfaces in the orthonormal

reference surface frame ei . Substituting (A4) and (A5) into strain–displacement relationships (A7),
we arrive at the index notations of these relationships

2ε̇ I
�� = 1

cI
�

	I
��+ 1

cI
�
	I
��+ 1

cI
�cI

�

∑
i

	I
i�	

I
i�,

2ε̇ I
�3 = �̇

I
� + 1

cI
�
	I

3�+ 1

cI
�

∑
i

�̇
I
i 	

I
i�,

2ε̇ I
33 = 2�̇

I
3 +∑

i
�̇

I
i �̇

I
i ,

(A8)

where

�̇
1
i = 1

h
(−3u̇1

i +4u̇2
i − u̇3

i ), �̇
2
i = 1

h
(−u̇1

i + u̇3
i ),

�̇
3
i = 1

h
(u̇1

i −4u̇2
i +3u̇3

i ).

(A9)

APPENDIX B

The column matrices KI
i jr of order 36×1 introduced in Section 6 are evaluated as follows:

(KI
��r )�+3I+9(s−1),1 = d�rs, (KI

��r )�+3I+9(s−1),1 =�rs B�s for � �=�,

(KI
��r )3+3I+9(s−1),1 = �rsk�s,

(KI
��r )�+3I+9(s−1),1 = d�rs, (KI

��r )�+3I+9(s−1),1 =−�rs B�s for � �=�,

(KI
3�r )3+3I+9(s−1),1 = d�rs, (KI

3�r )�+3I+9(s−1),1 =−�rsk�s,

(KI
i3r )i+9(s−1),1 = �rs(2I −5)/h, (KI

i3r )3+i+9(s−1),1 =4�rs(2− I )/h,

(KI
i3r )6+i+9(s−1),1 = �rs(2I −3)/h,

d�rs = 1

4�� A�r
n�s(1+n�r n�s) for � �=�,

where A�r , k�r and B�r are the nodal values of the geometrical parameters of the reference surface;
�rs is the Kronecker delta; parameters n�r are defined by (32) and, as we remember, the indices
r , s run from 1 to 4. The remaining components of column matrices not written out explicitly are
zero.
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