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Efficient mixed Timoshenko—Mindlin shell elements

G. M. Kulikov*! and S. V. Plotnikova

Department of Applied Mathematics and Mechanics, Tambov State Technical University,
Sovetskaya Street 106, Tambov 392000, Russia

SUMMARY

The precise representation of rigid body motions in the displacement patterns of curved Timoshenko—
Mindlin (TM) shell elements is considered. This consideration tequires the development of the strain—
displacement relationships of the TM shell theory with regard to their consistency with the rigid body
motions. For this purpose a refined TM theory of multilayered anisotropic shells is elaborated. The
effects of transverse shear deformation and bending-extension coupling are included. The fundamental
unknowns consist of five displacements and eight strains of the face surfaces of the shell, and eight
stress resultants. On the basis of this theory the simple and efficient mixed models are developed. The
elemental arrays are derived using the Hu—Washizu mixed variational principle. Numerical results are
presented to demonstrate the high accuracy and effectiveness of the developed 4-node shell elements
and to compare their performance with other finite elements reported in the literature. Copyright ©
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the main requirements of the modern shell theory that is intended for the general finite
element (FE) formulation is that it must lead to strain-free modes for rigid body motions.
The adequate representation of rigid body motions is a necessary condition if an element is
to have good accuracy and convergence properties. Therefore, when an inconsistent theory is
used to construct any finite element, erroneous straining modes under rigid body motions may
be appeared. This problem has been studied for the Kirchhoff-Love shell theory by Cantin
(1] and Dawe [2].
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1168 G. M. KULIKOV AND S. V. PLOTNIKOVA

Herein, the more general study on the basis of the refined Timoshenko—Mindlin (TM) the-
ory of multilayered shells is considered [3,4]. The direct use of the traditional TM shell
theory (the first-order shear deformation theory) [5-9] for solving a series of important shell
problems such as the contact problems is not always convenient. In these problems it is more
convenient to select as unknown functions the displacements of the top and bottom surfaces
of the shell, since with the help of these displacements the kinematic requirement of no pen-
etration of the contact bodies can be fulfilled. Furthermore, the proposed TM shell theory can
also simplify a formulation of new FE models [10].

Using the classical linear TM shell theory in a FE formulation for plates and shells is
well established and has been shown to give acceptable results [11—18]. This theory has the
advantage that independent displacement and rotation trial functions may be used and these
functions need only to be C° continuous. The developed FE formulation, based on the re-
fined TM shell theory [3,4] has the advantage because only independent trial functions of
displacements of the face surfaces may be used. It should be mentioned that in some works
(e.g. References [19, 20]) developing the degenerate solid shell concept [11,21] displacement
vectors of the bottom and top surfaces are also used and resolved with respect to some global
Cartesian basis in order to exactly describe rigid body motions. This allows, in particular,
special boundary conditions at the face surfaces of the shell to be accounted for. The same
idea of selecting as unknowns the displacements of the bottom and top surfaces to construct
any curved TM shell element is very attractive, since only in this case we can deduce linear
or non-linear TM strain—displacement relationships that are free for all small or large rigid
body motions, respectively. Taking into account that herein the displacement vectors of the
face surfaces are represented in the local reference surface basis, the developed FE formu-
lation has substantial computational advantages compared to the conventional isoparametric
FE formulations, since it eliminates the costly numerical integration by deriving the stiffness
matrices. Indeed, our element matrix requires only direct substitutions, no inversion is needed
if the element is rectangular, and it is evaluated by using the full exact analytical integration.

Our FE formulation is based on a simple and efficient approximation of shells via quadrilat-
eral 4-node elements developed by Hughes and Tezduyar [22], and by Wempner et al. [23].
The fundamental unknowns consist of five displacements and eight strains of the face sur-
faces of the shell, and eight stress resultants. The simplest admissible approximations of the
two-dimensional fields are used, namely, bilinear approximations of the displacements, and
assumed approximations of the strains and stress resultants. In this connection the element
characteristic arrays are obtained by applying the Hu—Washizu mixed variational principle. Tt
is worth noting that the stiffness matrix has six, and only six, zero eigenvalues as required
for satisfaction of the general rigid body motion requirements.

Numerical results are presented to demonstrate the high accuracy and effectiveness of the
FE models developed and to compare their performance with other FE models reported in
the literature. For this purpose four tests were employed. They were pinched cylinder tests, a
shell roof test, and an open cylindrical multilayered composite shell test.

2. STRAIN-DISPLACEMENT EQUATIONS

Let us consider a shell of uniform thickness 4. The shell may be defined as a three-dimensional
body of volume ¥ bounded by two bounding surfaces S~ and S*, located at distances 6~
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and &+ measured with respect to the reference surface S, and the edge boundary surface (2
that is perpendicular to the reference surface (see Figure 1). Let the reference surface S be
referred to an orthogonal curvilinear co-ordinate system a; and a, which coincides with the
lines of principal curvatures of its surface; e; and e, denote the tangent unit vectors to the
lines of principal curvatures. The a3 axis is oriented along the outward unit vector e; normal
to the reference surface. A

The three-dimensional strain—displacement relationships for the general shell in a vector
form can be written as

1 Cu e 1 Ou 1 Ou L.
sij—ﬁiajieﬂrj{;ga—jei G#J)

€
£ == — €;
ii I{z aai 34

(1)
Hy=A,(1 + kyo3), Hy=1

where u=>_, u;e; is the displacement vector; u,-(ocl,zxog) are the components of this vector;
A, and k, are the Lamé coefficients and principal curvatures of the reference surface; H, are
the Lamé coefficients of any surface parallel to the reference surface. Both here and in the
following developments, unless otherwise specified, Greek indices may take the values 1, 2
while Latin indices take the values 1,2,3.

The refined TM shell theory is based on the linear approximation of the displacement vector
in the thickness direction [3]:

u=N(3)v +Nt()v" (2a)
vE = Z U;tea + 13€3 (2b)
N~ (a3) = (6% —a3)/h, N*(o3)=(a3~67)/h (2¢)

where v* are the displacement vectors of the face surfaces S*; vF(x,a,) are the tangential
displacements of the face surfaces; v3(a;,a;) is the transverse displacement of the reference
surface; N~ (a3) and N*(az) are the linear shape functions. The linear approximation (2)
may be treated as a refined Timoshenko kinematic hypothesis (e.g. works {7, 8], where as
unknown functions the displacements and rotation components of the reference surface are
selected). The advantage of the proposed approach is obvious, since with the help of the
displacements vt the special loading conditions at the face surfaces of the shell can be for-
mulated. Moreover, this simplifies a formulation of new FE models and provides a convenient
way to express the non-linear strain—displacement relationships in terms of face surface strains
[3,10].

Substituting displacements (2a) into the strain—displacement relationships (1) and taking
into account formulas for the derivatives of the unit vectors e; along the co-ordinate lines a;
and o, [24], one can obtain the following strain—displacement equations of the TM theory of
the thick shells:

A - 1 ov™ + 1 ovt a
8w— N ((Z3)ITYT“V+N (%)EEZ €y, 833—0 (33)
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Figure 1. Shell element. Figure 2. Distribution of tangential strains over
shell thickness.
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where H,=4,(1 + k.,.S) are the Lamé coefficients of the middle surface; 6=(6~ + +)/2 is
the distance from the reference surface S to the middle surface of the shell.

Replacing further the Lamé coefficients H, by their values on the top and bottom surfaces
Hyi =A4,(1+k,6%) in formulas (3a) for the tangential strains and by their values on the middle
surface 1‘-1y in formulas (3b) for the transverse shear strains, the strain—displacement equations
of the refined TM theory of the moderately thick shells are obtained:

1o, ovr
[N (aS) Hy aay +N (a3)H+ EP ] €y, 833_0
8 r]v 1 é_v_ N (o ‘_1_ av_+1
2= l ((l}) a ( 3)1114. aa]J €
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The strain—displacement equations (4) are more attractive than Equations (3) because they are
completely free for small rigid body motions. It will be shown in the next section. Besides,
tangential strains egﬂ are distributed over the shell thickness according to the linear law. As
can be seen from Figure 2, it is an acceptable assumption for the moderately thick shells
because the coupling conditions

£2p(0% ) =gbp(6%) =E::ﬁ

are valid.

More simple strain—displacement equations can be obtained for the thin shells replacing the
Lamé coefficients H, and H, by the Lamé coefficients of the reference surface 4, in formulas
(3a) and (3b). As a result we have

e e 1 ov™ + 1 ovt
Bw—[N (“3)A—y—‘+N (“3):4‘?%

€ 83, =0
td 33
Bocy y :I

¢ fr= 1 ov~ . 1 ov*
&= [N (“3)14—1TM+N (Oﬂs)A—1 67:1] e
1 ov- 1 ovt )
p— i + -z
+ [Ny G+ N a%]el

o 1 ov N R D
sy3—|3ey+2y——a—&;e3, B—h(v Vo), v—2(v +vH)

As we shall see in the next section, the strain—displacement equations (5) can never be free
for small rigid body motions.

3. RIGID BODY MOTIONS

A small rigid body motion is defined as [24]
wR=A+® xR 6)

where A=3", A;e; is the constant displacement (translation) vector; @ =3, ®;e; is the constant
rotation vector; R=r + a3e; is the position vector of any point of the shell; r is the position
vector of any point of the reference surface (see Figure 1). In particular, rigid body motions
of the face surfaces are

viR=A + ® x R* ))

where R* =r + é%e; are the position vectors of points of the top and bottom surfaces.
The derivatives of the translation and rotation vectors with respect to the reference surface
co-ordinates are zero, i.e.
oA oo
9A o, 2y (8)
oo, oa,
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Taking into account the formulas for the derivatives of the unit vectors e; along the co-ordinate
lines [24] and using Equations (7) and (8), one can obtain the following expressions for the
derivatives:
av:kR
oa,

=H*® x e, 9)

It can be verified by using Equations (7) and (9) that the strains given by Equations (4)
are all zero in a general rigid body motion, i.e.

ER=(® x &)e,=0, eR=0 (i#))

So, the TM theory of moderately thick shells is completely strain-free for all rigid body
motions.

Using again Equations (7) and (9) in the strain—displacement equations (5), we get the
following results:

eR = (1 + ko3 )(® x €,)e, =0, &R =(k; — ky)a3(D x €, )e,
£X = kaO(D x €,)e3

showing that rigid body motions can never be completely strain free for the TM theory of
thin shells. However, the transverse shear strains ¢ =0 when a reference surface is selected
to be the middle surface, since in this case =0. The tangential shear strain ¢ =0 in the
case of spherical shells or symmetrically loaded and supported isotropic or orthotropic shells
of revolution, and at the reference surface points of anisotropic shells of arbitrary geometry.

4. HU-WASHIZU FUNCTIONAL

Let us consider the shell built up in the general case by the arbitrary superposition across
the wall thickness of N thin layers of uniform thickness A;. The kth layer may be defined
as a three-dimensional body of volume V; bounded by two surfaces S;_; and S, located at
the distances d;—; and J, measured with respect to the reference surface S, and the edge
boundary surface §2; that is perpendicular to the reference surface (see Figure 3). Here and
in the following developments the index k=1,N identifies the belonging of any quantity to
the kth layer. The full edge boundary surface Q= + €, + --- + Qy is generated by the
normals to the reference surface along the bounding curve I" (with the arc length s) of this
surface. It is also assumed that the bounding surfaces S;_; and S; are continuous, sufficiently
smooth and without any singularities. Let the reference surface be referred to an orthogonal
curvilinear co-ordinate system a, and a, which coincides with the lines of principal curvatures
of its surface. The a3 axis is oriented along the outward unit vector e; normal to the reference
surface.

The constituent layers of the shell are supposed to be rigidly joined, so that no slip on
contact surfaces and no separation of layers can occur. The material of each constituent layer is
assumed to be linearly elastic, anisotropic, homogeneous or fibre reinforced, such that in each
point there is a single surface of elastic symmetry parallel to the reference surface. Let p;
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Figure 3. Multilayered shell element.

and p;} be the intensities of the external loading acting on the bottom surface S~ =S, and top
surface S+ =Sy in the a; co-ordinate directions, respectively, while q® =g%v + g®t + ¢gFe;
be the external loading vector acting on the edge boundary surface (2. Here, q®, ¢ and
qgk) are the components of its vector acting in the v, ¢ and a3 directions; v and t are the
normal and tangential unit vectors to the bounding curve I'.

The refined TM theory of multilayered shells is also based on the linear approximation
of the displacement vector in the thickness direction (2), where we should set 6~ =J, and

0T =6y. Substituting the displacements (2) and strains rewritten in the more convenient form
&xp =N_(OC3)EJ§ +N+(OC3)E;;}, &3=E;, €3=0 (10)

into the Hu~Washizu functional [3,25] and taking into account the strain—displacement rela-
tionships (4) for the moderately thick shell, one can obtain

J = // {H = Y [RH(Ep —ep) +R;,(E;i, - e;k)]
S a<p
= Y [Ru3(Eus — €3) +(Q5 — pa Wz +(QF + piWi1-(0:— py + p‘{)vs} ds
[*4
_ f (Rovr +Biot + Rovr + Rivt + Ravs)ds (1)
N
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where
1 (1 vt
+_
,ew_{ (A 6v -l-BaU(; +k Us)
1 /1 ovf 1 /1 ovt 1
+ B + hkt + =B — —
‘2= C (A1 Boy ~ By ) +C (Az oy Blvz)’ en=Fy - Hy
(12)
1 ov 1 _ 1, _
0, =k, — z 533;, liy———z(v;L -v), vy=5(vy +vf
= = 1 o4
+_ + _ - Y
G =1+k0% §=1+kd, By_AlAz o, (0#7)
Here, II is the strain energy density; v¥, v and v; are the components of the displacement

vectors of the face surfaces in the co- ordlnate system v, ¢t and o5 (see Figure 3); E, L are the
tangential strains of the bottom and top surfaces; E,; are the transverse shear strams of the
middle surface; R and R, are the generalized and classical stress resultants; QF and Qs are

the generalized and classical body force resultants; Rw, RE and R,; are the generalized and
classical external load resultants which are defined as

=3 535> [435,6EapErs + Aapys(EogEys + EggEry) + Aaps B ES]

a<Py<d

1 t
+ = E Aa3y3Ea3Ey3 ’ oz3y3 - / $33 dOC3 (13)
>V

and

O
=; /{s (k)Ni(a3)da3, Rs=Y / o®dos

51: 51:
=3 / FONE()dos, Q3= JARK
k J&

k Jo—y

5 (14)
. roe
E / gPN*(a3)dos, RE= / g NE(a3) das
5k 1 k 51:—1

Ok

Z (k) dos
Op—1

In formulas (14) £{¥ and £ ) are the externally applied body forces of the kth layer, while

(I’,f) and a(k) denote the tangential and transverse shear stresses of the kth layer that can be
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found as
k) __ (k) (k) _ (k)
Oup = ;6 0“57583’5’ 03 = Z Cat3y3 €y3
ES v

where C;gy)a and ng’3 are the stiffness coefficients of the kth layer.

5. FE FORMULATION

It is well known that the Hu—Washizu variational principle provides the basis for the derivation
of various variational principles, and many different mixed and hybrid finite elements can be
designed [26]. Herein, the Hu—Washizu functional (11)—(14) for the element can be written
in the following form:

R L IRTAT _ (FT _ TRT\R _ T _
J _/ [LETAE — (ET — vBT)R — vI(P + Q)] A d¢, d&,
—1J-1

Te

VIR ds (15)
1

where ¢, and ¢, are the local co-ordinates of the element that vary from —1 to +1; A(&, &) is
the function characterizing the metric of the element; v=[v] v/ v; v v;]7 is the
displacement vector; vp=[v; v} v; v} 13]T is the displacement vector of the element
edge I'"'; E=[E;, E}, E;, ES, E;; Ef;, Ei3 Ex]" is the strain vector; R=[R;; R}, Ry, R},
R, R}, Riz Ry]T is the stress resultant vector; ﬁpz[ﬁ;, R: Ry RY Ryl is the loading
resultant vector acting on the element edge I'; Q=[Q; O O, O 0Os]" is the body force
resultant vector; P=[—p; pf — p; pF — p; + pi]" is the surface traction vector; A is the
constitutive stiffness matrix; B is the strain—displacement matrix.

For the quadrilateral 4-node shell element the displacement field is approximated according
to the standard C° interpolation:

v=> Nv (16)
1

where v,=[v], v{, v;, vi, vs]" are the displacement vectors of the element nodes; N/(¢1, &;)
are the linear shape functions of the element; £=1,4.

In accordance with [22, 23], the 20 modes of this element are the six rigid body motions, the
eight homogeneous states of strains EDJSOO, E;,;OO, EY, and the six additional modes representing

higher approximations of tangential normal strains E;;%!, E;)*', E,'°, E};!° and transverse shear
strains EV;, E1Y, i.e. we have following strain interpolations:

E=E® 4 E'%, + E%¢,
E® = [E500 F10 EZ00 F400 po00 p+00 g0 pooyr (17)
E"=[E;" Ef" 0000 EY 0", E"=[00E;'" ES° 000 EQ

The interpolations of the stress resultants follow the forms of the conjugate strains

R=R"” +R'"%¢; +R"¢, (18)
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where the vectors R%, R% and R!® are defined from Equations (17) by replacing a letter E
by a letter R.

The governing equations for the element are obtained by applying the Hu-~Washizu varia-
tional principle (15). Using Equations (16)~(18), and eliminating the strain and stress resultant
parameters on the element level, one can obtain

Ku=F

where K is the elemental stiffness matrix; F is the load vector; u is the vector of five dis-
placement components at nodal points of the element.

It should be noted that the formulation of the stiffness matrix K requires only direct sub-
stitutions; no inversion is needed if the element is rectangular. The matrix is symmetric and
positive definite, and has six, and only six, zero eigenvalues as required for satisfaction of
the general rigid body motion representation. Furthermore, the element matrix is evaluated
by using the full exact analytical integration and the element does not contain any spurious
zero energy modes. So, our FE formulation especially for the rectangular elements is very
economical and efficient.

6. NUMERICAL TESTS

Four tests were employed to assess the effectiveness of the developed TMS4 element based
on the strain—displacement equations (4) that are completely free for all rigid body motions.
They were a pinched cylinder with rigid end-diaphragms, a pinched cylinder with free edges,
a cylindrical shell roof, and a multilayered angle-ply cylindrical shell.

6.1. Pinched cylinder with rigid diaphragms

To illustrate the capability of the developed TMS4 element to overcome membran
shear locking phenomenon and to compare it with the different 4-node quadrilateral elements
[15,16,18,27,28], we consider one of the most demanding standard linear tests [29]. A thin
cylinder supported by rigid end-diaphragms is loaded by two opposite concentrated forces in
its middle section. The geometrical and material data of the problem are shown in Figure 4(a).

Three types of boundary conditions modelling the rigid end-diaphragm can be used:

PR |
dalid

v, =v3=0 (19a)
1)3—21)3:0 (19b)
1]2_:1);21_)3:0 (19C)

Besides, due to symmetry of the problem, only one octant of the cylinder is modelled with a
regular mesh of TMS4 elements.

Table I lists a comparison of the normalized radial displacement under the applied load
between the TMS4 element and aforementioned 4-node quadrilateral elements [30]. The
displacements are normalized with respect to the analytical solution —1.8245 x 10=° [29].

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1167-1183
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(2 Rigid diaphragms: R=300, L=600, h=3
E=3x10°, v=0.3, P=1
(b) Free edges: R=4.953, L=10.35, h=0.094
E=1.05x10’, v=0.3125, P=100

Figure 4. Pinched cylinder under opposite radial forces with: (a) rigid diaphragms and; (b) free edges.

Table 1. Pinched cylinder with rigid diaphragms. Normalized radial displacement
under the concentrated load.

MITC4 RSDS Mixed SRI QPH TMS4 TMS4
Mesh [15] [16] [18] [27] 28] (192) (19¢)
4x4 0.370 0.469 0.399 0.373 0.370 0.890 0.890
8 x 8 0.740 0.791 0.763 0.747 0.740 0.941 0.941
16 x 16 0.930 0.946 0.935 0.935 0.930 0.986 0.986

Note that all the three variants of boundary conditions (19) lead to the practically identical
results and very well model the ‘real’ boundary conditions,

v,=03=0 (20)

used by Heppler and Hansen [29]. As can be seen from Table I, our results show an excellent
agreement even for coarse meshes.

6.2. Pinched cylinder with free edges

The pinched cylinder with free edges has been also extensively treated for numerical testing
of new FE models. The geometrical and material properties of the cylinder are shown in
Figure 4(b). Owing to symmetry of the problem, only one octant of the cylinder is discretized.
The radial deflection at the load is given in Figure 5. The curves marked by e display the
results obtained by using the TMS4 element. Additionally, in Figure 5 the solutions, based on
the traditional cubic Lagrange element [31] (see curves marked by 4 ) and the cubic Lagrange
element [31] that has been augmented in the manner of Cantin [32] to provide the correct
rigid body motions (see curves marked by A), are presented. Both the Lagrange elements are
based on the classical TM shell theory. Note that the augmented Lagrange element solution
converges to value —0.1114 [31] as do the developed TMS4 element and the cubic Lagrange
element. However, our simple and efficient element solution converges more rapidly, since the
cubic Lagrange element possesses only two zero eigenvalues. At the same time its augmented

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1167-1183
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000 X1
X
® TMS4 element (1x3K and 3x3K meshes)
# Cubic Lagrange element (1xK mesh)
A Augmented cubic Lagrange element (1xKmesh)
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3
&
a
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S 008
1x5 3x18 1x7 3x24
1x12 — *
0.12 - , 13 . , ,
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Number of Degrees of Freedom

Figure 5. Pinched cylinder with free edges. Radial displacement under load.

R=25

=50
h=0.25
E=4,32x10"
v=0
pgh=90

Figure 6. Cylindrical shell roof under self-weight loading.

formulation has the six zero eigenvalues as required for satisfaction of the general rigid body
motion requirements.

6.3. Cylindrical shell roof

Let us consider an open cylindrical shell segment subjected to gravitational self-weight loading
and supported at its curved edges by rigid diaphragms, while the straight edges are free [33].
This problem has become a de facto standard test and has been frequently used for numerical
testing of FE approximations. The geometrical and material characteristics of the shell are
depicted in Figure 6. Owing to symmetry of the problem, only one quarter of the roof is
modelled with a regular mesh of TMS4 elements. Figure 7 shows the distribution of the axial
displacement at the diaphragm (around the curve AD) and the vertical displacement at the
middle span (around the curve BC), while Figure 8 displays the distribution of the moment
resultants M., =h(R}, — R;,)/2 at the middle span. The solid curves show the results obtained
by using the exact solution [33] as reported in works [11, 12]. One can see that the moment
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Figure 7. Cylindrical shell roof. Displacements: at (a) diaphragm and; (b) middle span.
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Figure 8. Cylindrical shell roof. Moment resultants at middle span.

resultant M, is calculated with an excellent exactitude for both meshes. However, the results
obtained for the moment resultant M, are less satisfactory. This phenomenon is explained by
using the constant approximation over the element for generalized stress resultants RS, in ¢
direction in accordance with Equations (18).

Table II additionally presents a comparison of the normalized vertical displacement at the
point C of the middle span between the TMS4 element and aforementioned 4-node quadri-
lateral elements [15,18,27,28]. The displacements [30] are normalized to the value —0.3024
calculated by MacNeal and Harder [34], while our displacement is normalized to the value
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Table II. Cylindrical shell roof. Normalized vertical displacement at point C (see Figure 6).

Mesh MITC4 [15] Mixed [18] SRI [27] QPH [28] TMS4
4%4 0.940 1.083 0.964 0.940 0.864
8 x 8 0.970 1.015 0.984 0.980 0.962

16 x 16 1.000 1.000 0.999 1.010 0.989

- L=100 mm
R=100 mm
h=10 mm

E,=211.75X 10" MPa
3
, E,=7.765X10° MPa
/ G,~3.869% 10’ MPa

3
/ | Grr2612x10'MPa
v1=0.27

(=)
»

- + - +
x=£50mm: vy = v =vy Vv, =V, =v;=0

=445 v5 = v =v;=0

Figure 9. Two-layer angle-ply cylindrical shell subjected to uniform stretching.

—0.3015. Such a value is a computationally exact solution of this problem based on the
developed TM shell theory. The slightly small difference between the reference solutions is
explained by a simple fact: in this test the shell response is more sensitive to the types of
boundary conditions modelling the rigid end-diaphragm (see for the comparison a pinched
cylinder with rigid diaphragms). One can observe that boundary conditions (19¢) used in our
FE formulation provide the more rigid end support than (20) used in works [33, 34].

6.4. Multilayered angle-ply cylindrical shell

It is apparent that using the simplified strain—displacement equations (5) can lead to incorrect
results for the moderately thick composite shells. To assess this statement, we consider an
open cylindrical two-layer angle-ply shell rigidly clamped at its curved edges and supported
at straight edges by rigid diaphragms. The shell is subjected to the uniform stretching vy as
shown in Figure 9. The material characteristics of each layer were taken to be those typical
of a high modulus composite [7] and are given in Figure 9, where subscripts L and T refer to
the longitudinal and transverse directions of the individual ply. Let the ply thicknesses and ply
orientations be [A/2,h/2] and [~y,+y], where v is measured in the clockwise direction from
x to the fibre direction. Due to the anisotropic shell response, we did not adopt symmetry
conditions and modelled the whole shell by using regular meshes of TMS4 and TMS4c
elements. The newly developed TMS4c element is based on the simplified strain—displacement
equations (5).
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Table III. Central transverse displacement —v3(0,0)/vy of the two-layer angle-ply cylindrical shell.

TMS4 TMS4c
Mesh  [0°,90°] [—15°15°] [=30°,30°] [—60°,60°] [0°,90°] [—15° 15°] [—30°,30°] [—60°,60°]
4x4 0077 1.705 4.091 1.469 0.077 1.703 4.085 1.468
4%x8 0.068 1.346 3.359 1.259 0.067 1.344 3.352 1.259
4% 12 0.066 1.330 3301 1.219 0.066 1.329 3.295 1.219
8x8 0.065 1.439 3.501 1.182 0.064 1.437 3.493 1.181
8x16 0.063 1.413 3418 1.126 0.062 1.412 3411 1.126
8x24 0.063 1.409 3.404 1.116 0.062 1.407 3.398 1.115
12x 12 0.063 1.434 3.456 1.131 0.062 1433 3.449 1.131
12x 24  0.062 1.423 3.422 1.106 0.062 1.422 3.416 1.105

6 6

[-30°, 30°]

[-15°% 15°]

0°, 90°
105,307

4

[-60°, 60°] [0° 90°]

Ei; (45, ¢)L/v,
)

Figure 10. Distribution of longitudinal strains of bottom and top surfaces:
(a) E;;; and (b) E}; at x=45mm in ¢ direction.

In Table III the values of the dimensionless central transverse displacement of the shell
segment for both TMS4 and TMS4c clements and for various ply orientations and meshes
are presented. It can be seen that using the strain—displacement equations (4) only insignifi-
cantly updates the results in a comparison with less general strain—displacement equations (5).
Thus, it is possible to recommend the geometrically linear TM shell theory on the basis of
strain—displacement equations (5) for using in engineering calculations. At the same time
applying the TM shell theory, which is not completely strain-free for rigid body motions
for solving the composite shells undergoing large deflections and large rotations can lead to
significant errors. Such a problem is currently under development. Finally, Figure 10 shows
the distribution of the longitudinal strains of the face surfaces at x=45 mm in ¢ direc-
tion for various ply orientations. It is seen that a response of the shell is very unusual
to the ply orientation [—30°,30°], where the longitudinal strain of the bottom surface is
negative.
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7. CONCLUSION

The simple and efficient mixed models have been developed for the analysis of multilayered
anisotropic TM shells. The first FE formulation is based on the strain—displacement equations
of the moderately thick shell, which are completely free for rigid body motions. The second
FE formulation is based on the strain—displacement equations of the thin shell that cannot be
completely free for rigid body motions in the case of anisotropic shells of arbitrary geometry.
As fundamental unknowns five displacements and eight strains of the face surfaces of the
shell, and eight stress resultants have been chosen. This allows, in particular, special loading
conditions at the bottom and top surfaces of the shell to be accounted for.

The elemental stiffness matrices of our FE formulations are symmetric and positive definite
and have six zero eigenvalues as required for satisfaction of the general rigid body motion
representation. Besides, the elemental matrices require only direct substitutions (no inversion
is needed) if elements are rectangular and they are evaluated using the full exact analytical
integration. It is important that the developed TMS4 and TMS4c elements do not contain any
spurious zero energy modes.

To demonstrate the high accuracy and effectiveness of the developed elements four tests
were employed. They were pinch tests, an open cylindrical shell roof test and an open
cylindrical composite shell test.

The extension to finite deflections poses no additional difficulties but requires algebra and
computation efforts. For this purpose the Hu—Washizu mixed functional for an analysis of
geometrically non-linear multilayered anisotropic shells [3,25] can be used. The extension to
initially stressed multilayered shells can also be done [35].
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