
1Note that these theories are extensions of Grigolyuk's theory
for three-layered shells [18] and multilayered shallow shells
[19,20], where the well-known zig-zag hypothesis was "rst for-
mulated.

International Journal of Non-Linear Mechanics 36 (2001) 323}334

Non-linear analysis of multilayered shells under initial stress

G.M. Kulikov*

Department of Applied Mathematics and Mechanics, Tambov State Technical University, Sovetskaya Street 106, Tambov 392620, Russia

Abstract

A re"ned non-linear "rst-order discrete-layer theory of initially stressed composite shells is developed. The material of
each layer of the shell is assumed to be linearly elastic, anisotropic, homogeneous or "ber-reinforced. The transverse shear
and transverse normal e!ects are included. It is also assumed, that the well-known Novozhilov's three-dimensional
partially non-linear strain}displacement relationships are valid. As unknown functions the tangential and transverse
displacements of external surfaces of the shell and layer interfaces are selected. A computational model for solving the
non-linear problems of the axisymmetric deformation of initially stressed multilayered anisotropic shells of revolution is
presented. The joint in#uence of anisotropy, initially stressed state response, geometrical non-linearity and laminated
material response on the stress state of the shell is examined. Results show, that neglecting the e!ects of anisotropy and
geometrical non-linearity leads to an incorrect description of the stress "eld in cross-ply toroidal shells made of
cord-rubber composites. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Elasticity; Anisotropy; Multilayered shell; Initial stresses

1. Introduction

In recent years, considerable interest has been
found in the concerned literature to substantiate
the geometrically non-linear theory of elastic multi-
layered composite shells and plates. In this context,
a number of monographs and survey papers [1}6]
where rich references of the literature dealing with
similar problems to the ones in our study can be
found are indicated. For some works addressing
the problem of multilayered composite plates and
shells under initial stress, the reader is referred to
Sun [7], Biot [8], Sun and Whitney [9], Kulikov
[10], Grigolyuk and Kulikov [11] and Kulikov
[12].

*Fax: #1-7-0752-471-313.
E-mail address: kulikov@apmath.tstu.ru (G.M. Kulikov).

Here, the re"ned discrete-layer theory of initially
stressed anisotropic shells is developed. Discrete-
layer theories are based on layer-by-layer approxi-
mations of the displacements, strains or stresses
[4,5]. Consequently, the order of the governing
equations is dependent on the number of layers
of the shell. The simplest examples of these
theories are the so-called "rst-order discrete-layer
theories [12}17]1 based on Grigolyuk's zig-zag
hypothesis (piecewise linear approximation) for
displacements in the thickness direction.

The direct use of the traditional "rst-order
discrete-layer theory [3,12,17] for solving a series
of important shell problems such as the contact
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Fig. 1. The element of the multilayered shell.

problems is not always convenient. In these prob-
lems, it is more convenient to select as unknown
functions the tangential and transverse displace-
ments of the face surfaces of the shell, since with the
help of these displacements the kinematic require-
ment of no penetration of the contact bodies can be
ful"lled.

This theory is based on the re"ned Grigolyuk's
hypothesis for the displacement vector. The gov-
erning equations of the theory of initially stressed
multilayered anisotropic shells are obtained by us-
ing the principle of the virtual work and Novoz-
hilov's partially non-linear strain}displacement
relationships. An outcome of this approach is that
the equilibrium equations of the geometrically non-
linear elasticity theory are satis"ed pointwise into
the shell body with an exactitude acceptable for the
thin shell structures.

On the basis of the proposed discrete-layer the-
ory the computational model for solving the
axisymmetric problems of initially stressed multi-
layered anisotropic shells of revolution is elabor-
ated. The material of each layer of the shell is
assumed to be linearly elastic, anisotropic, homo-
geneous or "ber-reinforced, such that in each point
there is a single surface of elastic symmetry parallel
to the reference surface. The adopted computa-
tional model is based on the Newton}Raphson
method and the incremental method. The linear
boundary value problem is solved by applying the
discrete orthogonalization method [3].

An example includes some relatively simple
problem, namely, the non-linear axisymmetric
response of a cross-ply toroidal shell made of
cord-rubber materials and subjected to in#ation
pressure. Numerical results show that the joint
in#uence of anisotropy and geometrical non-
linearity on the stress "eld in composite toroidal
shells is essential.

2. Elasticity theory of initially stressed multilayered
shells

Let us consider the shell built up in the general
case by the arbitrary superposition across the wall
thickness of N thin layers of uniform thickness h

k
.

The kth layer may be de"ned as a three-dimen-

sional body of volume<
k

bounded by two surfaces
S
k~1

and S
k
, located at the distances d

k~1
and

d
k
measured with respect to the reference surface S,

and the edge boundary surface )
k

that is perpen-
dicular to the reference surface (see Fig. 1). The
full-edge boundary surface )"+N

k/1
)

k
is gener-

ated by the normals to the reference surface along
the bounding curve ! (with the arc length s) of this
surface. It is also assumed that the bounding surfa-
ces S

k~1
and S

k
are continuous, su$ciently smooth

and without any singularities. Let the reference
surface be referred to an orthogonal curvilinear
coordinate system a

1
and a

2
which coincides with

the lines of principal curvatures of its surface. The
z-axis is oriented along the outward unit vector
e
3

normal to the reference surface.
The constituent layers of the shell are supposed

to be rigidly joined, so that no slip on contact
surfaces and no separation of layers can occur. The
material of each constituent layer is assumed to be
linearly elastic, anisotropic, homogeneous or "ber-
reinforced, such that in each point there is a single
surface of elastic symmetry parallel to the reference
surface (monoclinic symmetry). Let p8 (k)ab are the
initial stresses; p8 ~a and p8 `a are the intensities of
the initial external loading acting on the bottom
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surface S
0

and top surface S
N

in the a
1
, a

2
and

z coordinate directions, respectively; q8 (k)l , q8 (k)
t

and
q8 (k)
3

are the intensities of the initial external loading
acting on the edge boundary surface )

k
in the l, t

and z directions, where m and t are the normal and
tangential unit vectors to the bounding curve ! (see
Fig. 1). Here and in the following developments the
index k identi"es the belonging of any quantity to

the kth layer (k"1, N) and indices a, b take the
values 1, 2, 3, and indices i, j take the values 1, 2.

The boundary value problem for the prestressed
multilayered shell is de"ned by setting the addi-
tional loading p~a , p`a , q(k)l , q(k)

t
, q(k)

3
(see Fig. 1). As

a result of this loading the resulting stress state can
be represented as

p(k)rab "p8 (k)ab#p(k)ab , (1)

where p(k)ab are the additional stresses of the kth
layer.

Since the initial surface loads p8 ~a ,
p8 `a , q8 (k)l , q8 (k)

t
, q8 (k)

3
and initial stresses p8 (k)ab constitute

the self-equilibrated system and assuming the case
of thin shells, the principle of the virtual work for
the prestressed thin multilayered shell can be writ-
ten in the following form [21]:

N
+
k/1
PPP

Vk

+
axb

(p(k)abde(k)ab#p(k)rab dg(k)ab )A1
A

2
da

1
da

2
dz

!PP
SN

+
a

p`a du(N)a dS#PP
S0

+
a

p~a du(1)a dS

#

N~1
+
n/1

PP
Sn

+
a

q(n)a (du(n`1)a !du(n)a ) dS

!

N
+
k/1
PP)k

(q(k)l du(k)l #q(k)
t

du(k)
t
#q(k)

3
du(k)

3
) dS"0,

(2)

where A
1

and A
2

are the LameH coe$cients of the
reference surface; u(k)a are the components of the
displacement vector of the kth layer in the coordi-
nate system a

1
, a

2
, z that are re!erred from the

reference surface S; u(k)l , u(k)
t

and u(k)
3

are the compo-
nents of the displacement vector of the kth layer in
the coordinate system l, t, z;q(n)a are the interlaminar

transverse stresses acting on the layer interfaces S
n
,

and e(k)ab and g(k)ab are the linear and non-linear parts
of strains of the kth layer, i.e.

e(k)ab"e(k)ab#g(k)ab .

The three-dimensional Novozhilov's partially
non-linear strain}displacement relationships in the
Lagrange description for the multilayered thin
shells will be [3]
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where k
1

and k
2

are the principal curvatures of the
reference surface. In the expressions of tangential
strains (3) only those non-linear geometrical terms
that depend on #(k)

1
and #(k)

2
are retained. The

remaining non-linear terms are discarded. Sign
(1Q2) accompanying certain relations means that
the remaining relations, not explicitly written, are
correspondingly obtained by replacing subscript
1 by 2 and vice versa.

The governing equations of the geometrically
non-linear elasticity theory for the prestressed thin
multilayered shell can be derived by applying the
principle of the virtual work (2). Substituting the
strain}displacement relationships (3) into Eq. (2)
and using Gauss' theorem, one obtains the
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following variational equation:

N
+
k/1
PPP

Vk

+
a
¸(k)a du(k)a A

1
A

2
da

1
da

2
dz

!PP
SN

+
a

(s(N)a3!p`a )du(N)a dS

#PP
S0

+
a

(s(1)a3!p~a )du(1)a dS#
N~1
+
n/1

PP
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+
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[(s(n`1)a3

!q(n)a )du(n`1)a !(s(n)a3!q(n)a )du(n)a ] dS

!
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t
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3
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3

] dS"0, (4)

where p(k)ll , p(k)lt , p(k)l3 are the stress tensor compo-
nents of the kth layer in the coordinate system
l, t, z; &(k)

i3
and s(k)

i3
are the generalized transverse

shear stresses, and ¸(k)a are the three-dimensional
non-linear di!erential operators, corresponding to
Novozhilov's strain}displacement relationships (3),
which can be written as follows:
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. (5)

Equating to zero the coe$cients of du(k)a , one
obtains the equilibrium equations and boundary
conditions of the geometrically non-linear elasticity
theory of prestressed multilayered thin shells. These
are

f the equilibrium equations for the kth layer:

¸(k)a "0, (6)

f the boundary conditions for the generalized
transverse stresses on the top surface S

N
:

s(N)a3"p`a , (7)

f the boundary conditions for the generalized
transverse stresses on the bottom surface S

0
:

s(1)a3"p~a , (8)

f the equilibrium conditions for the generalized
transverse stresses at the layer interfaces S

n
:

s(n`1)a3 "s(n)a3"q(n)a (n"1, N!1), (9)

f the boundary conditions on the edge boundary
surfaces )

k
:

p(k)ll"q(k)l , p(k)lt "q(k)
t

, &(k)l3"q(k)
3

. (10)

Additionally, we should invoke the generalized
Hooke's law:
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(11)

where b(k)lm
are the sti!ness coe$cients of the kth

layer (l,m"1, 6).
So, we have all fundamental relationships (1), (3),

(6)}(11) for "nding the resulting stress state of the
prestressed multilayered anisotropic shell.

3. Discrete-layer theory of initially stressed shells

The "rst-order discrete-layer theory of shells is
based on the piecewise linear approximation for the
displacement vector in the thickness direction

u(k)a "N~
k
(z)v(k~1)a #N`

k
(z)v(k)a ,

N~
k

(z)"(d
k
!z)/h

k
, N`

k
(z)"(z!d

k~1
)/h

k
, (12)

where v(k~1)a (a
1
, a

2
) and v(k)a (a

1
, a

2
) are the tangen-

tial and transverse displacements of the face surfa-
ces of the shell and layer interfaces, N~

k
(z) and
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N`
k

(z) are the linear shape functions of the kth layer.
The piecewise linear approximation (12) may be
considered as a re"ned Grigolyuk's hypothesis (see,
for example, the monograph [3], where as un-
known functions the displacements of the reference
surface and rotation components for the kth layer
are selected). The advantage of the proposed ap-
proach is obvious, since with the help of the dis-
placements v(0)a and v(N)a the kinematic boundary
conditions on the face surfaces of the shell, and in
particular, the conditions of no penetration of the
contact bodies can be formulated. Besides, this pro-
vides a convenient way to express the non-linear
strain}displacement relationships in terms of layer
interfaces strains.

Substituting the displacements from Eq. (12) into
the strain}displacement relationships (3) and varia-
tional equation (4), and taking into account that
a shell is thin, the following equations of the geo-
metrically non-linear discrete-layer theory of pre-
stressed shells are obtained:

f the equilibrium equations

P
d1

d0
¸(1)a N~

1
(z) dz"0, P

dN

dN~1

¸(N)a N`
1

(z) dz"0,

P
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¸(n)a N`
n
(z) dz#P

dn`1

dn
¸(n`1)a N~

n`1
(z) dz"0

(n"1, N!1), (13)

f the boundary conditions for the generalized
transverse stresses on the top surface (7),

f the boundary conditions for the generalized
transverse stresses on the bottom surface (8),

f the equilibrium conditions for the generalized
transverse stresses at the layer interfaces (9),

f the natural boundary conditions on the edge
boundary surface ):

(H(1)~lr !HK (1)~lr ) dv(0)
r
"0,

(H(N)`lr !HK (N)`lr ) dv(N)
r

"0,
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where H(k)Bll , H(k)Blt , S(k)Bl3 are the generalized stress
resultants:
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and HK (k)Bll , HK (k)Blt , HK (k)Bl3 are the generalized loading
resultants that are obtained from Eq. (15) by replac-
ing the stresses p(k)ll , p(k)lt , &(k)l3 by intensities of the
external loads q(k)l , q(k)

t
, q(k)

3
acting in the l, t, z direc-

tions, correspondingly;

f the strain}displacement relationships
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where E(k~1)
ij

, E(k)~
i3

and E(k)
ij

, E(k)`
i3

are the tangen-
tial and transverse shear strains of the bottom and
top surfaces of the kth layer, respectively:
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Fig. 2. The distribution of the tangential strains e(k)
ij

and e(k)e
ij

over
the shell thickness.
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Note that the tangential strains e(k)
ij

are distrib-
uted over the shell thickness according to the piece-
wise linear law since the re"ned Grigolyuk's zig-zag
hypothesis has been adopted. As can be seen from
Fig. 2, it is an acceptable assumption for the thin
shell structures. Really, better expressions for the
tangential strains can be written by using the piece-
wise quadratic approximation that are exact for the
proposed non-linear shell theory, i.e.
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It is apparent that from the last equations and
Eqs. (16), (17) follow that the coupling conditions
e(k)e
ij

(d
m
)"e(k)

ij
(d

m
)"E(m)

ij
are satis"ed, where m"

k!1 and k. Besides, values of these strains will
always coincide for the geometrically linear shell
theory.

Introducing the non-linear di!erential operators
corresponding to the "rst-order discrete-layer

theory
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where H(k)B
ia , S(k)B

i3
, P(k)

i3
are the generalized stress

resultants and ¹(k)a3 are the classical stress resultants
de"ned as
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taking into account relations (7)}(9) and integrating
by parts, one can obtain from Eqs. (13), 3(N#1)
non-linear equilibrium equations of the initially
stressed multilayered thin shell in terms of stress
resultants

I(1)~a !p~a "0, I(N)`a #p`a "0,

I(n)`a #I(n`1)~a "0 (n"1, N!1). (20)

In order to obtain the constitutive equations for
the stress resultants, the equations of the generaliz-
ed Hooke's law (11) should be used. Unfortunately,
such approach cannot correctly describe the shells
made of incompressible materials or nearly incom-
pressible materials having Poisson's coe$cients
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lab+0.5 (aOb). To avoid this contradiction we
should simplify the equations of the generalized
Hooke's law for the tangential stresses (11) omitting
the underlined terms. It is an acceptable assump-
tion for thin shell structures.

Indeed, consider the orthotropic layer of the shell
whose axes of symmetry a(k)

1{
, a(k)

2{
, z do not coincide

with the coordinate directions a
1
, a

2
, z. In axes of

symmetry the equations of the generalized Hooke's
law will be

e(k)
1{1{

"

1

E(k)
1

p(k)
1{1{

!

l(k)
21

E(k)
2

p(k)
2{2{

!

l(k)
31

E(k)
3

p(k)
33

,

e(k)
2{2{

"!

l(k)
12

E(k)
1

p(k)
1{1{

#

1

E(k)
2

p(k)
2{2{

!

l(k)
32

E(k)
3

p(k)
33

, (21)

e(k)
33

"!

l(k)
13

E(k)
1

p(k)
1{1{

!

l(k)
23

E(k)
2

p(k)
2{2{

#

1

E(k)
3

p(k)
33

, (22)

e(k)
2{3

"

1

G(k)
23

p(k)
2{3

, e(k)
1{3

"

1

G(k)
13

p(k)
1{3

, e(k)
1{2{

"

1

G(k)
12

p(k)
1{2{

,

(23)

where E(k)
1

, E(k)
2

and E(k)
3

are the elastic moduli in the
a(k)
1{

, a(k)
2{

and z directions; G(k)
12

, G(k)
13

and G(k)
23

are the
shear moduli. From reasons of symmetry we have
l(k)ab/E(k)a "l(k)ba/E(k)b (aOb).

As a shell is thin, with an exactitude acceptable
to engineering calculations it is possible to accept
the following assumption p(k)

33
;p(k)

1{1{
, p(k)

2{2{
. Ne-

glecting the transverse normal stress in Eq. (21) and
solving for the tangential stresses, we "nd

p(k)
1{1{

"c(k)
11

e(k)
1{1{

#c(k)
12

e(k)
2{2{

,

p(k)
2{2{

"c(k)
12

e(k)
1{1{

#c(k)
22

e(k)
2{2{

,

c(k)
11

"

E(k)
1

1!l(k)
12

l(k)
21

,

c(k)
22

"

E(k)
2

1!l(k)
12

l(k)
21

,

c(k)
12

"

l(k)
12

E(k)
2

1!l(k)
12

l(k)
21

. (24)

Substituting the tangential stresses p(k)
1{1{

and
p(k)
2{2{

into Eq. (22) and solving for the transverse

normal stress, we obtain

p(k)
33

"c(k)
13

e(k)
1{1{

#c(k)
23

e(k)
2{2{

#c(k)
33

e(k)
33

,

c(k)
13

"

l(k)
13

#l(k)
12

l(k)
23

1!l(k)
12

l(k)
21

E(k)
3

, c(k)
23

"

l(k)
23

#l(k)
21

l(k)
13

1!l(k)
12

l(k)
21

E(k)
3

,

c(k)
33

"E(k)
3

. (25)

In the coordinates a
1
, a

2
, z the generalized

Hooke's law (23)}(25) can be represented in the
following form:

p(k)
11

"b(k)
11

e(k)
11

#b(k)
12

e(k)
22

#b(k)
16

e(k)
12

,

p(k)
22

"b(k)
12

e(k)
11

#b(k)
22

e(k)
22

#b(k)
26

e(k)
12

,

p(k)
12

"b(k)
16

e(k)
11

#b(k)
26

e(k)
22

#b(k)
66

e(k)
12

. (26)

The remaining equations of the generalized
Hooke's law are given by formulas (11). The com-
ponents of the sti!ness matrix b(k)lm

in the new axes
can be found, for example, in [22].

It is a well-known fact that in the Tim-
oshenko}Mindlin-type shell theory the equations
of the generalized Hooke's law for the transverse
shear and normal stresses are not satis"ed point-
wise, but can be satis"ed in an integral sense. There-
fore, according to formulas (11), (19) the following
integral equations must be ful"lled:

P
dk

dk~1

(p(k)
33

!b(k)
13

e(k)
11

!b(k)
23

e(k)
22

!b(k)
33

e(k)
33

!b(k)
36

e(k)
12

) dz"0,

P
dk

dk~1

(p(k)
13

!b(k)
45

e(k)
23

!b(k)
55

e(k)
13

)NB
k

(z) dz"0

(1Q2& 4Q5). (27)

With the help of the constitutive equations (26),
(27), strain}displacement relationships (16) and ex-
pressions (19) we can obtain the constitutive equa-
tions for the stress resultants of the non-linear
"rst-order discrete-layer theory of initially stressed
anisotropic shells. However, due to their intricacy,
these will not be displayed here.

Now, we have an opportunity to satisfy point-
wise the equations of the three-dimensional elastic-
ity theory (6) exactly for a plate and approximately
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for a shell with an exactitude acceptable for thin
shell structures. Integrating Eq. (6) across the shell
thickness from d

0
to z and using the boundary

conditions on the bottom surface (8) and equilib-
rium conditions at the layer interfaces (9), one can
obtain the equations for the generalized transverse
stresses

s(k)
13

"p~
1
!

1

A
1

LQ(k)
11

La
1

!

1

A
2

LQ(k)
12

La
2

!B
1
(Q(k)

11
!Q(k)

22
)!2B

2
Q(k)

12

!k
1
R(k)

13
(1Q2),

s(k)
33

"p~
3
!

1

A
1

LR(k)
13

La
1

!

1

A
2

LR(k)
23

La
2

!B
1
R(k)

13

!B
2
R(k)

23
#k

1
Q(k)

11
#k

2
Q(k)

22
, (28)

where Q(k)
ij

and R(k)
i3

are the new stress resultants
depending on the transverse coordinate:

Q(k)
ij
"

k~1
+
n/1
P

dn

dn~1

p(n)
ij

dz#P
z

dk~1

p(k)
ij

dz,

R(k)
i3
"

k~1
+
n/1
P

dn

dn~1

&(n)
i3

dz#P
z

dk~1

&(k)
i3

dz. (29)

It is important to note that from Eqs. (18), (20),
(28), (29) it is apparent that the boundary
conditions for the generalized transverse stresses
on the top shell surface (7) are also satis"ed since
Q(N)

ij
(d

N
)"+N

k/1
(H(k)~

ij
#H(k)`

ij
) and R(N)

i3
(d

N
)"

+N
k/1

(S(k)~
i3

#S(k)`
i3

).
Finally, from the last formula (19) we can "nd the

transverse stresses

p(k)
i3
"s(k)

i3
!b(k)

i
(p8 (k)

33
#s(k)

33
), p(k)

33
"s(k)

33
. (30)

So, all governing relationships of the re"ned
non-linear "rst-order discrete-layer theory of pre-
stressed thin anisotropic shells have been derived.

4. Axisymmetric deformation of initially stressed
multilayered shells of revolution

Let us consider the prestressed multilayered an-
isotropic shell of revolution with uniform circum-

ferential properties subjected to axisymmetric load-
ing. It is assumed that the initial stresses p8 (k)ab are
independent on the circumferential coordinate. In
this case, the shell will deform axisymmetrically
remaining as a body of revolution, and the dis-
placements of the face shell surfaces and layer inter-

faces v(l)a (l"0, N) will depend only on the
meridional coordinate s.

Let Y be the state vector whose components are
de"ned as

>
1
"H(1)~

11
, >

1`n
"H(n)`

11
#H(n`1)~

11
,

>
N`1

"H(N)`
11

, >
N`2

"H(1)~
12

,

>
N`2`n

"H(n)`
12

#H(n`1)~
12

,

>
2N`2

"H(N)`
12

, >
2N`3

"S(1)~
13

,

>
2N`3`n

"S(n)`
13

#S(n`1)~
13

, >
3N`3

"S(N)`
13

,

>
3N`4`l"v(l)

1
,

>
4N`5`l"v(l)

2
, >

5N`6`l"v(l)
3

(n"1, N!1; l"0, N). (31)

Taking into account relationships (17), (18), (20),
(31) and constitutive equations we can write the
governing system of non-linear di!erential equa-
tions in the following vector form:

dY

ds
"F(s,Y). (32)

The boundary conditions of the axisymmetric
deformation problem according to formulas (14)
can be written as follows:

>
n
(s~) l

n
#>

3N`3`n
(s~) (1!l

n
)"0,

>
n
(s`)l

3N`3`n
#>

3N`3`n
(s`) (1!l

3N`3`n
)"0,

(33)

where >
n

and >
3N`3`n

are the components of the
vector Y; l

n
and l

3N`3`n
are the boundary coe$-

cients, which may take the values 0 and 1, and
de"ne any homogeneous static or kinematic
boundary conditions at the left edge s"s~ and

right edge s"s` of the shell, where n"1, 3N#3.
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Fig. 3. Four-layered composite toroidal shell subjected to in#a-
tion pressure.

The non-linear boundary value problem (32), (33)
can be reduced to a sequence of linear boundary
value problems by using the Newton}Raphson
method as

dY*m`1+

ds
"A(s,Y*m+) 'Y*m`1+#G(s,Y*m+). (34)

The linear boundary value problem (33), (34) is
solved by application of the discrete orthogonali-
zation method [3]. The process starts with Y*0+"0
and we carry on it until the inequality

max
l

D(>*m`1+l !>*m+l )/>*m`1+l D(e

will be satis"ed for a priori chosen parameter e,
where l"1, 6N#6.

As a numerical example, we consider a relatively
simple problem of the non-linear axisymmetric re-
sponse of the multilayered anisotropic tire. For the
sake of simplicity, the tire is modeled as a four-
layered anisotropic toroidal shell (the so-called
bias-ply tire) which has a circular cross-section (see
Fig. 3). The shell is subjected to uniform in#ation
pressure p~

3
"!q, where q"0.15MPa. The ma-

terial characteristics of the layers are taken to be
those typical of cord-rubber composites [12]:
E

L
"510.45 MPa, E

T
"6.91 MPa, G

LT
"2.33 M

Pa, G
TT

"1.77 MPa, l
LT

"0.46, l
TT

"0.95,

where the subscripts L and T refer to longitudinal
and transverse directions of the individual ply. Let
the geometrical characteristics of the inner surface
of the shell are R

1
"50mm and R

0
"250mm;

thicknesses of the shell and plies are h"4.8mm
and h

k
"h/Nmm; ply orientations are c

k
"

(!1)k~1c, where N"4, c"523 and k"1, 2, 3, 4.
The tire is assumed to be rigidly clamped at the rim
(at t"$1203).

This non-linear problem can be also solved by
using the incremental method [21]. Let the tire be
loaded to 0.15MPa in#ation pressure in "ve load
steps q

n
"0.03nMPa, where n"1, 5. At each of

the load steps the geometrically linear problem for
a prestressed shell of revolution is solved. It should
be noted that the e!ects of the meridian stretching
and thickness variation under the new geometry
computation were not taken into account. Other
feature of this approach is the non-conservative
character of the pressure loading since the displace-
ments are referred at each of the load steps from
a new reference surface.

The numerical results presented in Fig. 4 have
been obtained by using the incremental method
(see the solid lines with various values of the load
parameter q) and the Newton}Raphson method
(see curves marked by v). Note that only four
iterations were required for "nding the solution of
the geometrically non-linear problem with the
given accuracy e"10~4. Additionally, in Fig. 4 the
solution of the geometrically linear problem is
given (see curves marked by r). The distribution of
the stress components in the thickness direction is
shown for the middle cross-section (at t"603). It
is seen that both the numerical solutions of the
non-linear problem lead to the similar results. Note
that transverse shear stresses p

13
and p

23
obtained

by using the Newton}Raphson method and in-
cremental method do not vanish at the inner sur-
face of the shell and are discontinuous at the layer
interfaces. It can be explained by allowing for the
non-linear terms in formula (30). However, this
e!ect is appreciable only for the "nite de#ection
problems.

As already said, two layers of this cord-rubber
composite are put together with $c "ber orienta-
tions with respect to the meridional direction. Each
layer separately would try to exhibit the shear
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Fig. 4. The distribution of the stresses in the thickness direction at the cross-section (t"603): (a) p
11

; (b) p
22

; (c) p
12

; (d) p
13

; (e) p
23

; (f)
p
33

. (*) Incremental method; (}v}v}) Newton}Raphson method; (}r}r}) linear solution.
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2Note that the solution of this problem on the basis of the
geometrically non-linear shell theory and elasticity theory was
"rst found in [23,24].

coupling behavior. Their shearing actions would be
in opposite directions due to their opposite "ber
orientations. The mutual interaction between the
layers would try to restrict in-plane shear motions
and as a result would generate transverse shear
stresses p

23
that are essential in pneumatic tires. It

is apparent that in a case of using the traditional
non-linear theory of laminated orthotropic shells
we will lose this e!ect,2 i.e. p

23
"0. In this

connection let us pay attention to the same order
of the transverse shear stresses p

13
and p

23
that

it is noticeable, namely, for the non-linear
problem (see for a comparison Figs. 4(d) and (e)). It
points to an essential in#uence of anisotropy and
geometrical non-linearity on the stress "eld in
bias-ply tires.

It should be mentioned, that due to the essential-
ly non-uniform distribution of the transverse shear
stresses p

13
and p

23
over the thickness of a tire, the

Timoshenko}Mindlin-type shell theory does not
provide the reliable prediction of tire failure.

5. Conclusions

The re"ned "rst-order discrete-layer theory of
prestressed anisotropic shells has been developed.
The e!ects of the laminated anisotropic material
response, initially stressed state response, geometri-
cal non-linearity, transverse shear and transverse
normal strains are included. This theory is based on
the re"ned Grigolyuk's hypothesis adopted for the
displacement vector. As unknown functions the
tangential and transverse displacements of the face
surfaces of the shell and layer interfaces have been
chosen. Such choice of unknowns allows as much
as possible to algorithmize the computational
modeling of a series of important shell problems.
The governing equations of the theory of pre-
stressed multilayered anisotropic shells have been
obtained by using the principle of the virtual work
and the well-known Novozhilov's partially non-
linear strain}displacement relationships. The de-

veloped theory can be used for solving the shell
problems where the above e!ects are signi"cant.
Such problems can be met in many "elds of the
engineering science and especially in the tire mech-
anics.

The computational model for solving the
axisymmetric problems of prestressed multilayered
anisotropic shells of revolution has been presented.
This computational model is based on the New-
ton}Raphson method and incremental method
through using the discrete orthogonalization
method. For example, a relatively simple problem
of the non-linear axisymmetric response of the an-
isotropic bias-ply tire has been solved. The tire is
modeled by the four-layered cross-ply toroidal shell
subjected to in#ation pressure. It has been shown
that both the numerical solutions give similar re-
sults, excepting the values of the transverse shear
stresses at the inner surface of a tire. It has been also
established that neglecting the e!ects of anisotropy
and geometrical non-linearity can lead to an incor-
rect description of the stress "eld in bias-ply tires.
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