Chapter 47

On the Use of a New Concept of Sampling
Surfaces in Shell Theory

Gennady M. Kulikov and Svetlana V. Plotnikova

Abstract This paper focuses on the higher-order shell theory, which permits the
use of 3D constitutive equations. It is based on the new concept of sampling sur-
faces (S-surfaces) inside the shell body. According to this concept, we introduce N
not equally located S-surfaces parallel to the middle surface and choose displace-
ments of these surfaces as fundamental shell unknowns. Such choice allows us to
represent the higher-order shell formulation in a compact form and to derive strain-
displacement equations, which are invariant under all rigid-body shell motions.
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47.1 Introduction

It is well-known that a conventional way for developing the higher-order shell the-
ories accounting for thickness stretching is to utilize either quadratic or cubic series
expansions in the thickness coordinate and to choose as unknowns the generalized
displacements of the middle surface [1, 2]. In the present paper, we propose a new
concept of S-surfaces inside the shell body. As S-surfaces QL 2., Q. we choose
outer surfaces and any inner surfaces inside the shell body and introduce displace-

ment vectors u', uZ, ..., u” of these surfaces as shell unknowns. Such choice of

displacements with the consequent use of Lagrange polynomials of degree N—1in
the thickness direction permits one to derive strain-displacement equations, which
precisely represent rigid-body shell motions in a convected curvilinear coordinate
system. The latter is straightforward for development of the exact geometry (EG)
solid-shell element formulation. The term "EG” reflects the fact that the parametriza-

tion of the reference surface is known and, therefore, the coefficients of the first and
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second fundamental forms of the reference surface can be taken exactly at each
element node.

It should be mentioned that in recent works [3-5], the higher-order shell theo-
ries with three and four equally located S-surfaces have been developed. Herein, a
general case with N not equally located S-surfaces is studied.

47.2 Kinematic Description of Undeformed Shell

Consider a thick shell of the thickness 4. Let the midsurface 2 be described by
orthogonal curvilinear coordinates 6; and 6,, which are referred to the lines of prin-
cipal curvatures of its surface. The coordinate 65 is oriented along the unit vector e3
normal to the reference surface 2. Introduce the following notations: r = r(9;,6,)
is the position vector of any point of the midsurface; a, are the base vectors of the
midsurface defined as

2y =T = Agey, “47.1)

where e, are the orthonormal base vectors; A, are the coefficients of the first fun-
damental form; R = r + 6se3 is the position vector of any point in the shell body;
R’ = r +6le3 are the position vectors of S-surfaces; 6, are the transverse coordi-
nates of S-surfaces such that 6; =—h/2 and G’3V = h/2; g; are the base vectors in the
shell body given by

g€: =Ry =Ascees, g3=Rj3=e, 47.2)

where ¢, = 1 +k,85 are the components of the shifter tensor; k, are the principal cur-
vatures of the midsurface; g(’, are the base vectors of S-surfaces (Fig. 47.1) defined
as

Fig. 47.1 Geometry of the shell

gl =R, =Aqche,, gi=e, 47.3)

where ¢} = 1+ k(,f)g are the components of the shifter tensor at S-surfaces.
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Here and in the following developments, (...); stands for the partial derivatives
with respect to coordinates 6;; Greek tensorial indices @, B range from 1 to 2; Latin
tensorial indices i, j, k, m range from 1 to 3; indices /, J identify the belonging of
any quantity to the S-surfaces and take values 1,2, ..., N.

47.3 Kinematic Description of Deformed Shell

A position vector of the deformed shell is written as
R=R+u, (47.4)

where u is the displacement vector, which is always measured in accordance with
the total Lagrangian formulation from the initial configuration to the current config-
uration directly. In particular, the position vectors of S-surfaces are

R'=R'+u/, u'=u@®), (47.5)

where u’ (81, 6,) are the displacement vectors of S-surfaces.
The base vectors in the current shell configuration are defined as

g=R;=g+u; (47.6) -
In particular, the base vectors of S-surfaces of the deformed shell (Fig. 47.2) are
g =Rl =gl +u,, B=5:06)=es+p, 47.7)

B =u3(6)), (47.8)

where ,8' (61, 82) are the values of the derivative of the displacement vector with
respect to coordinate f3 at S-surfaces.
The Green-Lagrange strain tensor can be expressed as

1
26ij=——(8;-8i—gi"8/), 47.9
Eij A cic; @-g—g-g) ( )
where A3 = 1 and ¢3 = 1. In particular, the Green-Lagrange strain components at
S-surfaces are :
I / Y N B |
2€ij:28ij(g3): m(glgj—glgj) (4710)
ivj

Substituting (47.3) and (47.7) into the strain-displacement relationships (47.10) and

discarding non-linear terms, one derives

—d 'eﬂ+—1——ul -e
a»
Aac{, o Aﬁc;i A

282/3 =
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X

Fig. 47.2 Initial and current configurations of the shell

1
26l =B eu+ 7 u, 3, &l,=8"e. (47.11)
atq

Next, we represent displacement vectors u’ and 8’ in the reference surface frame
e; as follows:
! 1 / /
o= ule, =) ple: (47.12)
i i
Using (47.12) and presentations for the derivatives of unit vectors e; with respect to
orthogonal curvilinear coordinates

1 1
—e€pa = —Boeg—kee3, A_eﬁ,a = B,€q,
@

Ao
1 1
Z;e3,11/ = K€ B(r = A_Q‘A;Aaﬂ (ﬁ * a'), (4713)
one obtains l
A—auf[, = > ALe (47.14)
i
where
I 1y I 1 I Ly 1
Ape = 5= Ug o + Batig + kots, Agg = 5= Ug o~ Batty, (B# ),
A{Y Aﬂ/
1
Ay = —uf , — kot (47.15)

Aq
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Substituting (47.12) and (47.14) in strain-displacement relationships (47.11), we
arrive at the index notations of these relationships

1

1
J) ) !
28(43 = C_IAUB-'_ C_I/I,B(Y’
ﬁ [e4
1
2l =L+ C—,,lg(,, £l =B (47.16)

[¢4

Remark 1. The strain components (47.16) are objective, i.e., they represent pre-
cisely all rigid-body shell motions in any convected curvilinear coordinate system.
It can be verified following a technique developed in [4, 5].

47.4 Displacement and Strain Approximations in Thickness
Direction

Up to this moment, no assumptions concerning displacements and strains fields have
been made. We start now with the first fundamental assumption of the proposed
higher-order shell theory. Let us assume that the displacement field is approximated
in the thickness direction according to the following law:

ui=y L', (47.17)

1

where L/ (65) are the Lagrange polynomials of degree N — 1 expressed as
63 —6;

Ll:ne’—e{

J#I 73

(47.18)

such that L/(65) = 1 for J = I and L'(6}) = 0 forJ # 1.
The use of (47.8), (47.12) and (47.17) yields

Bl=> M@, (47.19)
J

where M/ = L’3 are the derivatives of the Lagrange polynomials. Thus, the key func-

tions ﬁ{ of the proposed higher-order shell theory are represented as a linear combi-
nation of displacements ;.

The following step consists in a choice of correct approximation of strains
through the thickness of the shell. It is apparent that the best solution of the problem
is to choose the strain distribution, which is similar to the displacement distribution
(47.10), that is,

gij=y L'l (47.20)
I
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47.5 Variational Equation

Substituting strains (47.20) into the principal of the virtual work and introducing

stress resultants
h/2

H,= f aijllcicadbs, (47.21)
-h/2

we arrive at the following variational equation:

ff[ZZH’ eU—Z c 02p+6u c}c;pi"éu})
(47.22)

where p;, plf are the surface loads acting on the bottom and top surfaces; Wy is the
work done by external loads applied to the boundary surface .

For simplicity, we restrict ourselves to the case of linear elastic materials. The
natural choice for constitutive equations is the generalized Hook’s law:

A1A2d61d0; = 6W5,

oij = Z CijmErm. (47.23)
k,m

Inserting stresses (47.23) in (47.21) and taking into account strain approximation

(47.20), one finds
Z Z DYl (47.24)

hi2
Dtljkm_cijkm f L'L’cicrdbs. (47.25)
—h/2

where

Remark 2. Recalling that ¢, are the polynomials of degree one, whereas L’ and
L’ are the polynomials of degree N — 1, one can carry out the exact integration in
(47.25) by using the n-point Gaussian quadrature rule withn =N+ 1.

47.6 Finite Element Formulation

Variational equation (47.22) in conjunction with (47.24) and (47.25) is the basis for
developing the EG four-node solid-shell element. The abbreviation EG is explained
in Introduction. The finite element formulation is based on the simple and efficient
interpolation of shells via curved EG four-node solid-shell elements

ul =" Nud, (47.26)
r
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where N, (&1, &) are the bilinear shape functions of the element; u{r are the dis-
placements of S-surfaces at element nodes; &, = (6, —cq) /£, are the normalized
curvilinear coordinates (Fig. 47.3); ¢, are the coordinates of the element center;
2¢, are the lengths of the element; the index r runs from 1 to 4 and denotes the
number of nodes.

5 o 5. 20 p
~ ~ 2 1
P, ﬁ] B 0tutatc, E—
el Q
: cap--=mmiilel | 22,
-1 I g, = !
ﬁs -] '[34 133 : P_l:
C 0,
F:F(éi, ‘;33) I"(B.. 87)

X1

Fig. 47.3 Biunit square in (£1,£2)-space mapped into the EG four-node shell element in
(x1, x2, x3)-space

To implement the analytical integration throughout the element [6], we employ
the assumed interpolation of strain components

eli= > N&l,, &l =el(Py), (47.27)
r

where P, are the element nodes in (£1, £2)-space. The main idea of such approach
can be traced back to the ANS method [7]. It is important to note that herein we treat
the term “ANS” in a broader sense. In the proposed EG solid-shell element formu-
lation, all strain components are assumed to vary bilinearly inside the biunit square.
This implies that instead of expected non-linear interpolation of strains throughout
the element the more suitable bilinear ANS interpolation is utilized.

Introducing a displacement vector of the shell element

v=[uruiuiul],
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T
I, ., ,1.,2 .2 2 N N N
U, = ulru2ru3rulru2ru3r“‘ulru2ru3r] (47.28)

and utilizing a standard finite element technique, one arrives at the element equilib-
rium equations
KU=F, (47.29)

where K is the element stiffness matrix; F is the force vector.

47.7 Numerical Examples

The performance of the higher-order shell theory and EG four-node solid-shell ele-
ment formulation developed is evaluated by using several exact solutions of the 3D
elasticity theory extracted from the literature.

47.7.1 Square Plate Under Sinusoidal Loading

Consider first a simply supported square plate (Fig. 47.4) subjected to the sinu-
soidally distributed pressure load p; = —posin ’iz—‘ sin %. The mechanical and geo-

metrical parameters are taken as follows: E = 107, v=03anda=b=1.To compare
the results derived with an exact solution [8], the following dimensionless variables
are introduced:

Us = 100ER us(a/2, a2, 2)/ poa®,  S11 = 10h%c11(a/2, a/2, 2)/ poa?,

S12 = 10K2012(0, 0,2)/poa®,  S13 = 10ha13(0, a/2, 2)/ poas
S33=033(a/2,a/2,2)/po, z=63/h.
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Fig. 47.4 Simply supported square plate
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Owing to symmetry of the problem, only one quarter of the plate is modeled by

the 64 x 64 mesh of EG four-node solid-shell elements. The data listed in Tables 47.1
and 47.2 show that the S-surfaces concept developed permits one to find the numer-
ically exact solutions even for very thick plates. Fig. 47.5 presents the distribution

of stresses in the thickness direction in the case of using seven equally located S-

surfaces for different values of the slenderness ratio a/h. These results demonstrate
the high potential of the proposed higher-order shell theory. This is due to the fact
that the boundary conditions for transverse stresses S 13 and S33 on the bottom and

top surfaces are satisfied properly.
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Fig.47.5 Distribution of stressss S11» S12, 13 and § 33 through the thickness of the plate for N =7
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Table 47.1 Results for a thick square plate with a/h =2

Variant Us(0) $11(=0.5) §12(=0.5) S13(0) $33(=0.5)
N=3 5.610 -2.683 0.830 1.596 -1.066
N=5 6.042 -3.027 1.045 2.306 -1.013
N=7 6.046 -3.013 1.045 2.276 -1.000
N=9 6.046 -3.013 1.045 2.277 -1.000
Exact [8] 6.047 -3.014 1.046 2.277 -1.000

Table 47.2 Results for thick and thin square plates with five equally located S-surfaces

N=5 Exact solution [8]

afh Us0) S§11(=05) $§12(=05 S130) Us(0) S1(-0.5) $12(-0.5) S§13(0)

4 3.663 -2.174 1.026 2.369 3.663 -2.175 1.027 2.362
10 2942 -2.004 1.056 2.384 2942 -2.004 1.056 2.383
100 2.804 -1.975 1.063 2.387 2.804 -1.976 1.064 2.387

47.7.2 Cylindrical Shell Under Sinusoidal Loading

Next, we study a simply supported cylindrical shell with L/R = 4 subjected to the
sinusoidal loading p3 = —posin "—zlcos402, where 6] and 6, are the longitudinal and
circumferential coordinates of the midsurface; L and R are the length and radius of
the shell. The shell is made of the unidirectional composite with the fibers oriented
in the circumferential direction. The mechanical parameters are taken as follows:

Fig. 47.6 Simply supported cylindrical shell
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Table 47.3 Results for a thick cylindrical shell with R/h =2

Variant ~ U3(0)  $11(0.5) 8§205)  §12(-05) SO S3(0)  S3(0)

N=3 6.693 1.151 1.433 -0.962 0.993 -1.674 -0.4216
N=5 7.248  0.936 4.410 -1.582 1.508 -2.123 -0.3762
N=7 7.466 1.201 5.061 -1.729 1.495 -1.981 -0.3649
N=9 7.497 1.353 5.162 -1.755 1.497 -2.063 -0.3755
Exact [9] 7.503 1.332 5.163 -1.761 1.504 -2.056 -0.37

Table 47.4 Results for thick and thin shells with seven equally located S-surfaces

N=7 Exact solution [9]

R/h U3(0) S20.5) S350 $»30) U0 S»05 S0 §23(0)

4 2782 4.854 0.9863 -2.970 2783  4.859 0.987 -2.990

10 0.9188 4.048 0.5199 -3.665 09189 4.051 0.520 -3.669

100 0.5169 3.840 0.3927 -3.856  0.5170 3.843 0.393 -3.859
0.5

-0.25

0.5
-30 -20 0 S; 0

Exact solution [9] (—&—), present shell theory (—&—)

Fig. 47.7 Distribution of transverse normal stresses S 33 through the thickness of the shell for N =7

FEy =25FE7,Gir=0.5E1, Grr=0.2ET, ET = 109 , vit = vrr = 0.25. Here, subscripts
L and T refer to the fiber and transverse directions of the ply. To compare the derived
results with the exact solution [9] the following dimensionless variables are utilized:

S11 =100R2011(L/2,0,2)/poR?, S22 = 10k2020(L/2, 0, 2)/ poR?,

S12 = 100k°012(0, /8, 2)/poR>, 13 = 1000 13(0, 0, 2)/ poR,
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S23 =10ho23(L/2,n/8,2)/poR, S33 =033(L/2,0,z)/po,
Us = 10ELh*us(L/2,0,2)/ poR*, z=63/h.

Due to symmetry of the problem, only one sixteenth of the shell (Fig. 47.6)
is discretized with the 32 X 128 mesh of EG four-node solid-shell elements. The
data listed in Tables 47.3 and 47.4 demonstrate again the high potential of the shell
theory developed. Additionally, Fig. 47.7 presents the distribution of transverse nor-
mal stresses in the thickness direction in the case of using seven equally located
S-surfaces for different values of the slenderness ratio R/A. It is seen that boundary
conditions on the outer surfaces are satisfied correctly.

47.8 Conclusions

A simple and efficient concept of S-surfaces inside the shell body has been proposed.
This concept permits the use of 3D constitutive equations and leads for the sufficient
number of S-surfaces to the numerically exact solutions of 3D elasticity problems
for thick and thin shells.
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