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The paper deals with a recently developed method of sampling surfaces (SaS) and its implementation for
the three-dimensional (3D) steady-state problem of thermoelasticity for laminated functionally graded
(FG) plates subjected to thermomechanical loading. The SaS method is based on choosing inside the
nth layer In not equally spaced SaS parallel to the middle surface of the plate in order to introduce
temperatures and displacements of these surfaces as basic plate variables. Such an idea permits the
presentation of the thermoelastic laminated FG plate formulation in a very compact form. The SaS
are located inside each layer at Chebyshev polynomial nodes that provides a uniform convergence of
the SaS method. This means that the SaS method can be applied efficiently to the 3D stress analysis
for thermoelastic laminated FG plates with a specified accuracy utilizing the sufficient number of SaS.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, the functionally graded (FG) materials are widely
used in mechanical engineering due to their advantages compared
to traditional laminated materials [1,2]. However, the study of FG
materials is not a simple task because the material properties
depend on the spatial coordinate and some specific assumptions
regarding their continuous variations in the thickness direction
are required [3]. This fact restricts the implementation of the Pag-
ano approach [4,5] and the state space approach [6,7] for the 3D
exact analysis of FG simply supported rectangular plates. Another
popular approach to 3D exact solutions, namely, asymptotic
approach was applied efficiently to FG plates subjected to thermo-
mechanical loading [8,9]. A new approach to closed-form elasticity
solutions for FG isotropic and transversely isotropic plates is con-
sidered in papers [10,11]. These solutions are based on the general
solution of the equilibrium equations of inhomogeneous elastic
media [12]. The efficient approach to the 3D exact analysis of
thermoelasticity has been proposed by Vel and Batra [13,14]. They
studied the static and transient thermoelastic problems for FG
simply supported plates with the material properties presented
by Taylor series expansions through the thickness coordinate.
Ootao and his coauthors [15–17] obtained the 3D exact solutions
for the transient thermoelastic response of FG strips and rectangu-
lar plates with simply supported edges under nonuniform heating
on outer surfaces. The original approach to analytical solutions for
the FG beams and plates was developed in contributions [18,19].
This approach is based on the so-called theory of directed surfaces
[20,21]. Recently, the sampling surfaces (SaS) approach has been
applied to 3D exact thermal and thermoelastic analyses of lami-
nated composite plates and shells [22–24]. The 3D stress analysis
of piezoelectric FG plates and shells on the basis of the SaS method
is given in [25,26]. However, the SaS approach has not been applied
to 3D steady-state thermoelasticity problems for laminated FG
plates yet.

According to the SaS method [27,28], we choose inside the nth
layer In not equally spaced SaS XðnÞ1;XðnÞ2; . . . ;XðnÞIn parallel to the
middle surface of the plate and introduce temperatures
TðnÞ1; TðnÞ2; . . . ; TðnÞIn and displacement vectors uðnÞ1;uðnÞ2; . . . ;uðnÞIn

of these surfaces as basic plate variables, where In P 3. Such choice
of unknowns in conjunction with the use of the Lagrange polyno-
mials of degree In � 1 in the thickness direction permits the pre-
sentation of governing equations of the proposed thermoelastic
FG plate formulation in a very compact form.

It should be mentioned that the SaS method with equally
spaced SaS does not work properly with the Lagrange polynomials
of high degree because of the Runge’s phenomenon [29]. This phe-
nomenon can yield the wild oscillation at the edges of the interval
when the user deals with any specific functions. If the number of
equally spaced nodes is increased then the oscillations become
even larger. However, the use of the Chebyshev polynomial nodes
[30] inside each layer can help to improve significantly the behav-
ior of the Lagrange polynomials of high degree because such a
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choice allows one to minimize uniformly the error due to the
Lagrange interpolation.

Currently, the use of layer-wise theories for the analysis of lam-
inated composite plates is widely accepted. The most general form
of layer-wise kinematics presented in Carrera’s unified formulation
[31] is written as

uðnÞi ¼ F0u½n�1�
i þ F1u½n�i þ

X
r

Fru
ðnÞ
ir ; x½n�1�

3 6 x3 6 x½n�3 ;

F0ðx3Þ ¼
x½n�3 � x3

hn
; F1ðx3Þ ¼

x3 � x½n�1�
3

hn
; Fr x½n�1�

3

� �
¼ Fr x½n�3

� �
¼ 0;

where uðnÞi ðx1; x2; x3Þ are the displacements of the nth layer

(i = 1,2,3); u½n�1�
i ðx1; x2Þ and u½n�i ðx1; x2Þ are the displacements of the

bottom and top surfaces of the nth layer (interfaces); uðnÞir ðx1; x2Þ
are the generalized displacements of the nth layer (r = 2,3, . . . ,R);

Fr(x3) are the prescribed polynomials of degree r; x½n�1�
3 and x½n�3 are

the transverse coordinates of layer interfaces X[n�1] and X[n]

(Fig. 1); hn ¼ x½n�3 � x½n�1�
3 is the thickness of the nth layer; x1 and x2

are the Cartesian coordinates of the middle surface X; x3 is the
thickness coordinate normal to the middle surface; the index n
identifies the belonging of any quantity to the nth layer and runs
from 1 to N, where N is the number of layers. Historically, the first
order layer-wise models [32–35] were first. Then, the second order
models with R = 2 and third order models with R = 3 were devel-
oped [36–38]. The fourth order layer-wise model (R = 4) is utilized
in Carrera’s unified formulation [39–41], where polynomials Fr are
evaluated as a difference between two Legendre polynomials of
degrees r and r � 2.

The origins of using the SaS can be found in contributions
[42,43] in which three, four and five equally spaced SaS are
employed. The SaS method with the arbitrary number of equi-
spaced SaS is considered in [44]. The more general approach with
the SaS located at Chebyshev polynomial nodes has been devel-
oped later [27,28]. Note also that the term SaS should not be con-
fused with such terms as a mathematical surface or a virtual
surface, which are extensively utilized in Carrera’s unified formula-
tion. This is due to the fact that in Carrera’s unified formulation the
generalized displacements of layers uðnÞir are employed. On the con-
trary, in a developed SaS formulation all basic variables have a
clear mechanical sense because of the introduction of tempera-
tures and displacements of SaS as plate unknowns. The similar
technique is adopted for the description of material properties,
which are also referred to SaS. This gives the opportunity to derive
the 3D exact solutions for laminated FG plates with a prescribed
accuracy utilizing the sufficiently large number of SaS located at
Chebyshev polynomial nodes inside each layer. Furthermore, in a
Fig. 1. Geometry of the laminated plate.
SaS formulation for shells such choice of displacements as funda-
mental unknowns yields the strain–displacement equations, which
exactly represent rigid-body motions of the shell in any convected
curvilinear coordinate system [28]. The latter is straightforward for
development of the exact geometry solid-shell elements [45,46].
The term ‘‘exact geometry’’ reflects the fact that the parametriza-
tion of the middle surface is known and, therefore, the coefficients
of the first and second fundamental forms of its surface can be
taken exactly at each element node.

2. Description of temperature and temperature gradient fields

Consider a laminated FG plate of the thickness h. The transverse
coordinates of SaS of the nth layer are defined as

xðnÞ13 ¼ x½n�1�
3 ; xðnÞIn

3 ¼ x½n�3 ;

xðnÞmn
3 ¼ 1

2
x½n�1�

3 þ x½n�3

� �
� 1

2
hn cos p 2mn � 3

2ðIn � 2Þ

� �
; ð1Þ

where In is the number of SaS corresponding to the nth layer; the
index mn identifies the belonging of any quantity to the inner SaS
of the nth layer and runs from 2 to In � 1, whereas the indices
in,jn,kn to be introduced later for describing all SaS of the nth layer
run from 1 to In. Besides, the tensorial indices i,j,k,l range from 1
to 3 and Greek indices a,b range from 1 to 2.

Remark 1. The transverse coordinates of inner SaS (1) coincide
with coordinates of the Chebyshev polynomial nodes [30]. This fact
has a great meaning for a convergence of the SaS method [22–28].

The relation between the temperature T and the temperature
gradient C is given by

C ¼ $T: ð2Þ
In a component form, it can be written as

Ci ¼ T ;i; ð3Þ

where the symbol (. . .),i stands for the partial derivatives with
respect to coordinates xi.

We start now with the first and second fundamental assump-
tions of the proposed thermoelastic laminated plate formulation.
Let us assume that the temperature and temperature gradient
fields are distributed through the thickness of the nth layer as
follows:

TðnÞ ¼
X

in

LðnÞin T ðnÞin ; x½n�1�
3 6 x3 6 x½n�3 ; ð4Þ

CðnÞi ¼
X

in

LðnÞin CðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð5Þ

where TðnÞin ðx1; x2Þ are the temperatures of SaS of the nth layer

XðnÞin ; CðnÞini ðx1; x2Þ are the components of the temperature gradient

at the same SaS; LðnÞin ðx3Þ are the Lagrange polynomials of degree
In � 1 defined as

TðnÞin ¼ T xðnÞin3

� �
; ð6Þ

CðnÞini ¼ Ci xðnÞin3

� �
; ð7Þ

LðnÞin ¼
Y

jn–in

x3 � xðnÞjn3

xðnÞin3 � xðnÞjn3

: ð8Þ

The use of Eqs. (3), (4), (6) and (7) yields

CðnÞina ¼ T ðnÞin;a ; ð9Þ

CðnÞin3 ¼
X

jn

MðnÞjn xðnÞin3

� �
T ðnÞjn ; ð10Þ
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where MðnÞjn ¼ LðnÞjn;3 are the derivatives of the Lagrange polynomials,
which are calculated at SaS as follows:

MðnÞjn xðnÞin3

� �
¼ 1

xðnÞjn3 � xðnÞin3

Y
kn–in ;jn

xðnÞin3 � xðnÞkn
3

xðnÞjn3 � xðnÞkn
3

for jn – in;

MðnÞin xðnÞin3

� �
¼ �

X
jn–in

MðnÞjn xðnÞin3

� �
: ð11Þ

It is seen from Eq. (10) that the transverse component of the tem-
perature gradient CðnÞin3 is represented as a linear combination of
temperatures of all SaS of the nth layer T ðnÞjn .

3. Description of displacement and strain fields

The strain components eij are written as

2eij ¼ ui;j þ uj;i; ð12Þ

where ui are the displacements of the plate.
Following the SaS technique, we introduce the third and fourth

assumptions of the thermoelastic laminated FG plate formulation.
Let us assume that displacement and strain distributions through
the thickness of the nth layer are similar to thermal and tempera-
ture gradient distributions (4) and (5), that is

uðnÞi ¼
X

in

LðnÞin uðnÞini ; x½n�1�
3 6 x3 6 x½n�3 ; ð13Þ

eðnÞij ¼
X

in

LðnÞineðnÞinij ; x½n�1�
3 6 x3 6 x½n�3 ; ð14Þ

where uðnÞini ðx1; x2Þ are the displacements of SaS XðnÞin ; eðnÞinij ðx1; x2Þ are
the strains of the same SaS defined as

uðnÞini ¼ ui xðnÞin3

� �
; ð15Þ

eðnÞinij ¼ eij xðnÞin3

� �
: ð16Þ

Using Eqs. (12), (13), (15) and (16), one obtains

2eðnÞinab ¼ uðnÞina;b þ uðnÞinb;a ; ð17Þ

2eðnÞina3 ¼ bðnÞina þ uðnÞin3;a ; ð18Þ

eðnÞin33 ¼ bðnÞin3 ; ð19Þ

bðnÞini ¼ ui;3 xðnÞin3

� �
; ð20Þ

where bðnÞini ðx1; x2Þ are the values of derivatives of displacements
with respect to thickness coordinate x3 at SaS defined as

bðnÞini ¼
X

jn

MðnÞjn xðnÞin3

� �
uðnÞjni : ð21Þ

This means that the key functions bðnÞini of the proposed thermoelas-
tic laminated plate formulation are represented as a linear combina-
tion of displacements of SaS of the nth layer uðnÞjni .

4. Variational formulation of heat conduction problem

The variational equation for the thermal laminated plate can be
written as

dJ ¼ 0; ð22Þ

where J is the basic functional of the heat conduction theory given
by

J ¼ 1
2

ZZ
X

X
n

Z x½n�3

x½n�1�
3

qðnÞi CðnÞi dx1dx2dx3 �
ZZ

X

TQ ndX; ð23Þ

where qðnÞi are the components of the heat flux vector of the nth
layer; Qn is the specified heat flux on the boundary surface
X ¼ X½0� þX½N� þ R, where R is the edge boundary surface of the
plate. Here and in the following developments, the summation on
repeated Latin indices is implied.

Substituting the through-thickness distribution (5) in Eq. (23)
and introducing heat flux resultants

RðnÞini ¼
Z x½n�3

x½n�1�
3

qðnÞi LðnÞin dx3; ð24Þ

one obtains

J ¼ 1
2

ZZ
X

X
n

X
in

RðnÞini CðnÞini dx1dx2 �
ZZ

X

TQ ndX: ð25Þ

The Fourier’s heat conduction equations are expressed as follows:

qðnÞi ¼ �kðnÞij CðnÞj ; x½n�1�
3 6 x3 6 x½n�3 ; ð26Þ

where kðnÞij are the components of the thermal conductivity tensor of
the nth layer.

Next, we accept the fifth assumption of the thermoelastic FG
plate formulation. Let us assume that thermal conductivity coeffi-
cients of the nth layer are distributed through the thickness of a
plate according to the following law:

kðnÞij ¼
X

in

LðnÞin kðnÞinij ; ð27Þ

that is extensively utilized in this paper, where kðnÞinij are the values
of the thermal conductivity coefficients on SaS of the nth layer.

The use of Eqs. (5), (26) and (27) into Eq. (24) leads to

RðnÞini ¼ �
X
jn ;kn

KðnÞinjnkn kðnÞjnij CðnÞkn
j ; ð28Þ

where

KðnÞinjnkn ¼
Z x½n�

3

x½n�1�
3

LðnÞin LðnÞjn LðnÞkn dx3: ð29Þ
5. Variational formulation of thermoelastic plate problem

The variational equation for the thermoelastic laminated plate
in the case of conservative loading can be written as [47]

dP ¼ 0; ð30Þ

where

P ¼
ZZ

X

X
n

Z x½n�3

x½n�1�
3

FðnÞdx1dx2dx3 �W; ð31Þ

FðnÞ ¼ 1
2

rðnÞij eðnÞij � gðnÞHðnÞ
� �

; ð32Þ

W ¼
ZZ

X

pþi u½N�i � p�i u½0�i

� �
dx1dx2 þWR; ð33Þ

where F(n) is the free-energy density of the nth layer; rðnÞij are the
components of the stress tensor of the nth layer; g(n) is the entropy

density of the nth layer; u½0�i ¼ uð1Þ1i and u½N�i ¼ uðNÞIN
i are the displace-

ments of the bottom and top surfaces X[0] and X[N]; p�i and pþi are
the loads acting on the bottom and top surfaces; WR is the work done
by external loads applied to the edge surface R; H(n) is the tempera-
ture rise from the initial reference temperature T0 defined as

HðnÞ ¼ TðnÞ � T0: ð34Þ

Substituting the strain distribution (14) and temperature
distribution

HðnÞ ¼
X

in

LðnÞin HðnÞin ; x½n�1�
3 6 x3 6 x½n�3 ; ð35Þ
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which follows from Eqs. (4) and (34) into Eqs. (31) and (32), and
introducing stress resultants

HðnÞinij ¼
Z x½n�

3

x½n�1�
3

rðnÞij LðnÞin dx3 ð36Þ

and entropy resultants

SðnÞin ¼
Z x½n�3

x½n�1�
3

gðnÞLðnÞin dx3; ð37Þ

one obtains

P ¼ 1
2

ZZ
X

X
n

X
in

HðnÞinij eðnÞinij � SðnÞinHðnÞin
� �

dx1dx2 �W : ð38Þ

For simplicity, we consider the case of linear thermoelastic
materials [47], which are described by

rðnÞij ¼ CðnÞijkle
ðnÞ
kl � cðnÞij HðnÞ; x½n�1�

3 6 x3 6 x½n�3 ; ð39Þ

gðnÞ ¼ cðnÞij eðnÞij þ vðnÞHðnÞ; x½n�1�
3 6 x3 6 x½n�3 ; ð40Þ

where CðnÞijkl are the elastic constants of the nth layer; cðnÞij are the ther-
mal stress coefficients of the nth layer; v(n) is the entropy-temper-
ature coefficient defined as

vðnÞ ¼ qðnÞcðnÞv =T0; ð41Þ

where q(n) is the mass density of the nth layer; cðnÞv is the specific
heat per unit mass of the nth layer at constant strain.

Finally, we introduce the sixth assumption of the thermoelastic
FG plate formulation. Let the material constants be distributed
through the thickness of the plate as accepted throughout the
paper

CðnÞijkl ¼
X

in

LðnÞin CðnÞinijkl ; ð42Þ

cðnÞij ¼
X

in

LðnÞincðnÞinij ; ð43Þ

vðnÞ ¼
X

in

LðnÞinvðnÞin ; ð44Þ

where CðnÞinijkl ; c
ðnÞin
ij and vðnÞin are the values of material constants on

SaS of the nth layer.
Substituting constitutive equations (39) and (40) respectively

into Eqs. (36) and (37) and taking into account the through-thick-
ness distributions (14), (35), (42), (43) and (44), we arrive at final
formulas for stress and entropy resultants

HðnÞinij ¼
X
jn ;kn

KðnÞinjnkn CðnÞjnijkl eðnÞkn
kl � cðnÞjnij HðnÞkn

� �
; ð45Þ

SðnÞin ¼
X
jn ;kn

KðnÞinjnkn cðnÞjnkl eðnÞkn
kl þ vðnÞjnHðnÞkn

� �
: ð46Þ

Here, coefficients KðnÞinjnkn are defined by Eq. (29).
Table 1
Results for a single-layer square plate with a/h = 3 and a = 0.

I1 ��u1ð0:5Þ �u3ð0Þ �r11ð0:5Þ

3 0.3986372494504680 1.278878243389591 1.99930214685483
7 0.4358933937131948 1.342554953466513 2.12403242828841
11 0.4358933942603120 1.342554689543095 2.12401841031404
15 0.4358933942603121 1.342554689542491 2.12401841019378
19 0.4358933942603120 1.342554689542491 2.12401841019378
Exact [4]a 0.4358933942603120 1.342554689542491 2.12401841019378

a The exact results have been obtained by the authors using the Vlasov’s closed-form
6. Analytical solution for laminated FG rectangular plates

In this section, we study a laminated orthotropic rectangular
plate subjected to thermomechanical loading. The boundary condi-
tions for the simply supported plate with edges maintained at the
reference temperature can be written as

rðnÞ11 ¼ uðnÞ2 ¼ uðnÞ3 ¼ HðnÞ ¼ 0 at x1 ¼ 0 and x1 ¼ a;

rðnÞ22 ¼ uðnÞ1 ¼ uðnÞ3 ¼ HðnÞ ¼ 0 at x2 ¼ 0 and x2 ¼ b; ð47Þ

where a and b are the plate dimensions. To satisfy boundary condi-
tions, we search for the analytical solution of the problem by a
method of the double Fourier series expansion

HðnÞin ¼
X

r;s

HðnÞinrs sin
rpx1

a
sin

spx2

b
; ð48Þ

uðnÞin1 ¼
X

r;s

uðnÞin1rs cos
rpx1

a
sin

spx2

b
; ð49Þ

uðnÞin2 ¼
X

r;s

uðnÞin2rs sin
rpx1

a
cos

spx2

b
;

uðnÞin3 ¼
X

r;s

uðnÞin3rs sin
rpx1

a
sin

spx2

b
; ð50Þ

where r and s are the wave numbers in plane directions. The exter-
nal mechanical loads are also expanded in double Fourier series.

Substituting Fourier series (48) in Eqs. (9), (10), (25) and (28),
and taking into account (34) and (35), one derives

J ¼
X

r;s

Jrs HðnÞinrs

� �
: ð51Þ

Invoking the variational equation (22) and (51), we arrive at the
system of linear algebraic equations

@Jrs

@HðnÞinrs

¼ 0 ð52Þ

of order K, where K ¼
P

nIn � N þ 1. Thus, the temperature rises

of SaS of the nth layer HðnÞinrs can be found by using a method of
Gaussian elimination.

Substituting next Fourier series (48)–(50), and Fourier series
corresponding to mechanical loading in Eqs. (17), (18), (19), (21),
(33), (38), (45) and (46), we obtain

P ¼
X

r;s

Prs uðnÞinirs ;HðnÞinrs

� �
: ð53Þ

The use of the variational equation (30) and (53) yields a system of
linear algebraic equations

@Prs

@uðnÞinirs

¼ 0 ð54Þ

of order 3K. Therefore, the displacements of SaS of the nth layer uðnÞinirs

can be found using again a method of Gaussian elimination.
The described algorithm was performed with the Symbolic

Math Toolbox, which incorporates symbolic computations into
��r12ð0:5Þ �r13ð0Þ �r33ð0Þ

7 0.8349039028805547 0.4977436151168003 0.4752837277628003
3 0.9129329889584641 0.7022762666060094 0.4943950643281928
8 0.9129329901043438 0.7023022083223538 0.4944039935419638
2 0.9129329901043439 0.7023022084767580 0.4944039936052152
0 0.9129329901043437 0.7023022084767578 0.4944039936052150
1 0.9129329901043437 0.7023022084767578 0.4944039936052149

solution.



Table 2
Results for a single-layer square plate with a/h = 3 and a = 0.1.

I1 ��u1ð0:5Þ �u3ð0Þ �r11ð0:5Þ ��r12ð0:5Þ �r13ð0Þ �r33ð0Þ

3 0.4158336502652652 1.347977241257294 2.073239906807475 0.8700097684529745 0.4983226799021384 0.4596565434470269
7 0.4536977979133792 1.414636043682728 2.193265858989844 0.9502222750248108 0.7020700339720654 0.4877173446168515
11 0.4536977984142576 1.414635771310962 2.193270258459039 0.9502224469642998 0.7020957676355946 0.4877129579452970
15 0.4536977984142576 1.414635771310368 2.193270258650021 0.9502224469653965 0.7020957677904856 0.4877129578319663
19 0.4536977984142575 1.414635771310368 2.193270258650021 0.9502224469653963 0.7020957677904854 0.4877129578319657
Exact [10] 1.41464

Fig. 2. Through-thickness distributions of transverse stresses for a single-layer FG plate with a/h = 1: SaS formulation (-) for I1 = 11 and closed-form solutions [4] (h) and [10]
(s).

Fig. 3. MATLAB module for calculating Lagrange polynomials and their derivatives.

Fig. 4. MATLAB module for calculating displacements and strains of sampling
surfaces.
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the numeric environment of MATLAB. This gives an opportunity to
obtain analytical solutions for laminated FG rectangular plates
with a specified accuracy employing the sufficient number of SaS.

6.1. Single-layer FG square plate under mechanical loading

Consider a single-layer isotropic square plate subjected to
transverse sinusoidal loading acting on its top surface

pþ3 ¼ p0 sin
px1

a
sin

px2

b
; p�3 ¼ 0; ð55Þ

where p0 = 1 Pa and a = b = 1 m.
It is assumed that the elastic modulus is distributed in the

thickness direction according to the exponential law
E ¼ Eþecðz�0:5Þ; z ¼ x3=h; ð56Þ

where E+ is the elastic modulus on the top surface; c is the material
gradient index defined as



Fig. 5. MATLAB module for calculating a total potential energy and solving linear
equations.
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c ¼ lnðEþ=E�Þ; ð57Þ

where E� is the elastic modulus on the bottom surface, whereas the
Poisson ratio m is considered to be constant through the thickness
[10]. The material parameters are taken to be E+ = 107 Pa and
m = 0.3. To compare the results derived with closed-form solutions
of elasticity [4,10], the following dimensionless variables are
introduced:

�u1 ¼Gþu1ð0;a=2;zÞ=hp0; �u3 ¼Gþu3ða=2;a=2;zÞ=hp0; �r11 ¼r11ða=2;a=2;zÞ=p0;

�r12 ¼r12ð0;0;zÞ=p0; �r13 ¼r13ð0;a=2;zÞ=p0; �r33 ¼r33ða=2;a=2;zÞ=p0;

where G+ = E+/(2(1 + m)) is the shear modulus on the top surface.
Tables 1 and 2 show results of the convergence study due to

increasing the number of SaS. As turned out, the SaS method pro-
vides 15 right digits for all basic variables utilizing 13 inner SaS
inside the plate body. It should be noted that herein the bottom
and top surfaces are not included into a set of SaS because the
use of only Chebyshev polynomial nodes allows one to minimize
Table 3
Results for a single-layer metal/ceramic square plate with a/h = 5.

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0:

3 �1.2096 4.4213 �3.1907 �6.4775 4.327
5 �1.2117 4.4198 �4.1612 �6.4890 5.041
7 �1.2101 4.4111 �4.1765 �6.4804 4.208
9 �1.2101 4.4111 �4.1764 �6.4804 4.225
11 �1.2101 4.4111 �4.1764 �6.4804 4.226
13 �1.2101 4.4111 �4.1763 �6.4804 4.226
15 �1.2101 4.4111 �4.1763 �6.4804 4.226
Exact [13] �1.2101 4.4111 �4.1764 �6.4804 4.226

Table 4
Results for a single-layer metal/ceramic square plate with a/h = 10.

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0:

3 �1.2095 3.6353 �3.0497 �6.4773 4.729
5 �1.2140 3.6416 �4.1605 �6.5015 5.371
7 �1.2124 3.6337 �4.1555 �6.4928 4.456
9 �1.2124 3.6337 �4.1555 �6.4928 4.469
11 �1.2124 3.6337 �4.1555 �6.4928 4.470
13 �1.2124 3.6337 �4.1555 �6.4928 4.470
15 �1.2124 3.6337 �4.1555 �6.4928 4.470
Exact [13] �1.2124 3.6337 �4.1555 �6.4928 4.470
uniformly the error due to the Lagrange interpolation. Fig. 2 dis-
plays distributions of transverse stresses in the thickness direction
for the slenderness ratio a/h = 1 employing 11 SaS. These results
demonstrate convincingly the high potential of the proposed FG
plate formulation because boundary conditions on the bottom
and top surfaces of the very thick plate for transverse stresses
are satisfied exactly.

Figs. 3–5 list the implementation of the numerical algorithm
developed for a homogeneous isotropic plate by means of three
MATLAB modules. The first module serves for the computation
of Lagrange polynomials (8) and their derivatives (11). The sec-
ond module provides the calculation of displacements and
strains of sampling surfaces (17), (18), (19) and (21). The third
one serves for computing the total potential energy (38) and
solving the linear algebraic equations (54). This simple imple-
mentation emphasizes readability of the MATLAB code and
could be useful for the reader for his/her more general
implementations.

6.2. Two-phase composite square plate under temperature loading

Here, we study a FG composite plate fabricated by mixing metal
and ceramic phases. The simply supported square plate is sub-
jected on the top surface by the sinusoidally distributed tempera-
ture whereas the bottom surface is maintained at the reference
temperature, that is

Hþ ¼ H0 sin
px1

a
sin

px2

b
; H� ¼ 0; ð58Þ

where H0 = 1 K, T0 = 293 K and a = b = 1 m.
It is assumed that the metal phase is aluminum (Al) with

material properties [13,14] Em = 7 � 1010 Pa, mm = 0.3, am = 23.4
� 10�6 1/K, km = 233 W/mK, qm = 2707 kg/m3 and cm = 896 J/kgK,
whereas the material properties of the thermal ceramic barrier
(SiC) are Ec = 4.27 � 1011 Pa, mc = 0.17, ac = 4.3 � 10�6 1/K,
kc = 65 W/mK, qc = 3100 kg/m3 and cc = 670 J/kgK. For evaluating
the effective material properties through the thickness of the FG
plate, the Mori–Tanaka method [48–51] is invoked
25Þ �r33ð0Þ Hð0Þ �q1ð0Þ �q3ð�0:5Þ �gð0Þ

9 �266.58 0.39780 0.24994 0.59119 86.305
9 �6.3122 0.39379 0.24742 0.72392 85.605
5 �8.7894 0.39375 0.24740 0.73125 85.596
9 �8.6803 0.39375 0.24740 0.73158 85.596
5 �8.6830 0.39375 0.24740 0.73160 85.596
4 �8.6829 0.39375 0.24740 0.73160 85.596
4 �8.6829 0.39375 0.24740 0.73160 85.596
4 �8.6829 0.3938 0.7316

25Þ �r33ð0Þ Hð0Þ �q1ð0Þ �q3ð�0:5Þ �gð0Þ

6 �1259.0 0.42763 0.42763 0.71051 92.759
3 �13.790 0.42404 0.42404 0.80216 92.184
3 �9.7655 0.42401 0.42401 0.80723 92.176
9 �9.1531 0.42401 0.42401 0.80747 92.176
4 �9.1627 0.42401 0.42401 0.80748 92.176
3 �9.1622 0.42401 0.42401 0.80748 92.176
3 �9.1622 0.42401 0.42401 0.80748 92.176
3 �9.1622 0.4240 0.8075



Fig. 6. Through-thickness distributions of temperature, heat flux and displacements for a metal/ceramic FG square plate for I1 = 13.
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K ¼ Km þ
VcðKc � KmÞ

1þ VmðKc � KmÞ=ðKm þ 4Gm=3Þ ;

G ¼ Gm þ
VcðGc � GmÞ

1þ VmðGc � GmÞ=ðGm þ f mÞ
; f m ¼

Gmð9Km þ 8GmÞ
6ðKm þ 2GmÞ

;

k ¼ km þ
V cðkc � kmÞ

1þ Vmðkc � kmÞ=ð3kmÞ
;

a ¼ am þ
ðac � amÞð1=K � 1=KmÞ

1=Kc � 1=Km
;

cq ¼ cmqmVm þ ccqcV c;

Km ¼
Em

3ð1� 2mmÞ
; Kc ¼

Ec

3ð1� 2mcÞ
;

Gm ¼
Em

2ð1þ mmÞ
; Gc ¼

Ec

2ð1þ mcÞ
; ð59Þ

where Km and Kc are the bulk moduli of metal and ceramic phases;
Vm and Vc are the volume fractions of metal and ceramic phases
defined as

Vm ¼ 1� V c; Vc ¼ V�c þ Vþc � V�c
� �

ð0:5þ zÞc; z ¼ x3=h; ð60Þ

where V�c and Vþc are the volume fractions of the ceramic phase on
the bottom and top surfaces; c is the material gradient index.

To compare results derived with the exact solution of Vel and
Batra [13], we accept V�c ¼ 0;Vþc ¼ 0:5 and c = 2, and introduce
dimensionless variables at crucial points

�H¼Hða=2;a=2;zÞ=H0; �q1 ¼�hq1ð0;a=2;zÞ=kmH0;

�q3 ¼�hq3ða=2;a=2;zÞ=kmH0; �g¼gða=2;a=2;zÞ=Ema2
mH0;

�u1 ¼10u1ð0;a=2;zÞ=aamH0; �u3 ¼100hu3ða=2;a=2;zÞ=a2amH0;

�r11 ¼10r11ða=2;a=2;zÞ=EmamH0; �r12 ¼10r12ð0;0;zÞ=EmamH0;

�r13 ¼100ar13ð0;a=2;zÞ=hEmamH0; �r33 ¼100a2r33ða=2;a=2;zÞ=h2EmamH0:
Tables 3 and 4 list results of the convergence study utilizing the
various number of SaS I1 inside the plate body. These results dem-
onstrate convincingly the high potential of the developed thermo-
elastic FG plate formulation. It is important to note that here outer
surfaces are included into a set of SaS because of the use of bound-
ary conditions (58). Figs. 6 and 7 show through-thickness distribu-
tions of the temperature, heat flux, displacements and stresses for
different slenderness ratios a/h employing 13 SaS throughout the
thickness of the FG plate. As can be seen, the boundary conditions
for transverse stresses on the bottom and top surfaces are satisfied
again exactly.

7. Analytical solution for laminated FG plates in cylindrical
bending

In this section, we consider a laminated anisotropic FG plate in
cylindrical bending subjected to temperature loading. The bound-
ary conditions for the simply supported plate with edges main-
tained at the reference temperature are written as

rðnÞ11 ¼ rðnÞ12 ¼ uðnÞ3 ¼ HðnÞ ¼ 0 at x1 ¼ 0 and x1 ¼ a; ð61Þ

where a is the width of the plate. To satisfy boundary conditions, we
search for the analytical solution by a method of Fourier series
expansion

HðnÞin ¼
X

r

HðnÞinr sin
rpx1

a
; ð62Þ

uðnÞin1 ¼
X

r

uðnÞin1r cos
rpx1

a
; uðnÞin2 ¼

X
r

uðnÞin2r cos
rpx1

a
;

uðnÞin3 ¼
X

r

uðnÞin3r sin
rpx1

a
; ð63Þ



Fig. 7. Through-thickness distributions of stresses for a metal/ceramic FG square plate for I1 = 13.

Table 5
Results for an angle-ply FG square plate in cylindrical bending with a/h = 2.

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ Hð�0:125Þ �q3ð0Þ �gð�0:125Þ

3 �3.1900 15.778 8.0911 0.57599 �16.254 5.4059 �44.163 0.17315 0.12878 25.423
�6.0609 6.2061 43.391 �0.74468

5 �3.2361 16.213 8.1430 0.57593 �15.268 6.0563 �12.182 0.17634 0.33688 25.797
�15.585 6.0669 �9.2884 0.21846

7 �3.2330 16.191 8.1348 0.57574 �15.191 6.0485 �10.454 0.17624 0.34081 25.787
�15.183 6.0481 �10.374 0.33462

9 �3.2330 16.191 8.1359 0.57575 �15.189 6.0482 �10.420 0.17624 0.34088 25.787
�15.189 6.0482 �10.418 0.34058

11 �3.2330 16.191 8.1360 0.57575 �15.189 6.0482 �10.420 0.17624 0.34088 25.787
�15.189 6.0482 �10.420 0.34087

13 �3.2330 16.191 8.1360 0.57575 �15.189 6.0482 �10.420 0.17624 0.34088 25.787
�15.189 6.0482 �10.420 0.34088

Table 6
Results for an angle-ply FG square plate in cylindrical bending with a/h = 10.

In �u1ð0:5Þ �u3ð0:5Þ �r11ð0:5Þ �r12ð0:5Þ �r13ð0Þ �r23ð0Þ �r33ð0Þ Hð�0:125Þ �q3ð0Þ �gð�0:125Þ

3 �3.5976 10.077 11.033 0.35123 �19.456 2.5751 �126.89 0.67621 0.57070 98.691
�6.8253 3.5427 2519.6 0.15533

5 �3.6562 10.382 11.139 0.36661 �18.896 3.4801 �18.347 0.67613 0.58345 98.669
�19.640 3.4897 �10.309 0.55498

7 �3.6526 10.364 11.146 0.36569 �18.920 3.4729 �18.132 0.67613 0.58347 98.669
�18.905 3.4728 �16.795 0.58200

9 �3.6527 10.364 11.147 0.36569 �18.920 3.4729 �18.132 0.67613 0.58347 98.669
�18.920 3.4729 �18.054 0.58340

11 �3.6527 10.364 11.148 0.36569 �18.920 3.4729 �18.132 0.67613 0.58347 98.669
�18.920 3.4729 �18.129 0.58347

13 �3.6527 10.364 11.148 0.36569 �18.920 3.4729 �18.132 0.67613 0.58347 98.669
�18.920 3.4729 �18.132 0.58347

322 G.M. Kulikov, S.V. Plotnikova / Composite Structures 120 (2015) 315–325



Fig. 8. Through-thickness distributions of the temperature and displacements for an angle-ply FG square plate for I1 = I2 = I3 = 13.
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where r is the wave number along the x1-direction. The external
loads are also expanded in Fourier series.

Substituting Fourier series (62) and (63), and Fourier series cor-
responding to mechanical loading in Eqs. (9), (10), (17)–(19), (21),
(25), (28), (33), (38), (45) and (46), one obtains

J ¼
X

r

Jr HðnÞinr

� �
; ð64Þ

P ¼
X

r

Pr uðnÞinir ;HðnÞinr

� �
: ð65Þ

Invoking variational equations (22), (64) and (30), (65), we arrive at
two systems of linear algebraic equations

@Jr

@HðnÞinr

¼ 0; ð66Þ

@Pr

@uðnÞinir

¼ 0 ð67Þ

of orders K and 3K, respectively, where K ¼
P

nIn � N þ 1. The linear
systems (66) and (67) are solved independently by a Gaussian
elimination method.

The described algorithm was performed with the Symbolic
Math Toolbox, which incorporates symbolic computations into
the numeric environment of MATLAB. This gives the possibility
to derive analytical solutions for thermoelastic laminated aniso-
tropic FG plates in cylindrical bending with a specified accuracy.

As a numerical example, we study a two-layer square plate
[45/-45] composed of the graphite/epoxy composite and covered
with the metal/ceramic barrier on its top surface. Thus, a
three-layer plate with the stacking sequence [45/-45/FGM] and
ply thicknesses [0.25h/0.25h/0.5h] is considered. The mechanical
properties of the graphite/epoxy composite are taken as follows:
EL = E0, ET = E0/10, GLT = E0/20, GTT = E0/50, mLT = mTT = 0.25, aL = a0,
aT = 7.2a0, kL = 100k0, kT = k0, q = 1800 kg/m3 and cv = 900 J/kgK,
where E0 = 2 � 1011 Pa, a0 = 5 � 10�6 1/K and k0 = 0.5 W/mK. The
mechanical properties of the metal/ceramic composite are given
in Section 6.2. For evaluating the effective material properties
through the thickness of the metal/ceramic barrier, the Mori–
Tanaka scheme (59) is utilized with a specific distribution of the
volume fraction of the ceramic phase

Vc ¼ V�c þ Vþc � V�c
� �

ð2zÞc; 0 6 z 6 0:5; z ¼ x3=h;

V�c ¼ 0; Vþc ¼ 0:5; c ¼ 2: ð68Þ

It is assumed that the plate is loaded on the top surface by the sinu-
soidally distributed temperature whereas the bottom surface is
maintained at the reference temperature, that is

Hþ ¼ H0 sin
px1

a
; H� ¼ 0; ð69Þ

where a = 1 m, H0 = 1 K and T0 = 293 K. To analyze derived results
efficiently, we introduce the following dimensionless variables at
crucial points:

H ¼ Hða=2; zÞ=H0; �q3 ¼ �aq3ða=2; zÞ=kmH0;

�g ¼ gða=2; zÞ=Ema2
mH0;

�ua ¼ 10uað0; zÞ=aamH0; �u3 ¼ 100hu3ða=2; zÞ=a2amH0;

�r11 ¼ 10r11ða=2; zÞ=EmamH0; �r12 ¼ 10r12ða=2; zÞ=EmamH0;

�ra3 ¼ 100ara3ð0; zÞ=hEmamH0;

�r33 ¼ 100a2r33ða=2; zÞ=h2EmamH0:



Fig. 9. Through-thickness distributions of the heat flux and transverse stresses for an angle-ply FG square plate in cylindrical bending for I1 = I2 = I3 = 13.
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The data listed in Tables 5 and 6 show that the SaS method per-
mits the derivation of analytical solutions for thick angle-ply FG
plates with a prescribed accuracy using the sufficiently large num-
ber of SaS. Note that transverse components of the heat flux and
stresses are calculated at the interface between the plate and the
metal/ceramic barrier. Figs. 8 and 9 display through-thickness dis-
tributions of the temperature, displacements, heat flux and stres-
ses for different slenderness ratio a/h by choosing 13 SaS for each
layer. As can be seen, the boundary conditions for transverse stres-
ses on the bottom and top surfaces and the continuity conditions
for a heat flux and transverse stresses at both interfaces are satis-
fied again exactly.

8. Conclusions

An efficient method of solving the steady-state problems of 3D
thermoelasticity for laminated FG plates has been proposed. It is
based on a new method of SaS located at Chebyshev polynomial
nodes throughout the layers. This permits one to minimize uni-
formly the error due to Lagrange interpolation. The thermal stress
formulation for laminated orthotropic and anisotropic FG plates is
based on 3D constitutive equations and gives the possibility to
obtain the analytical solutions of thermoelasticity for thick and
thin laminated FG plates with a prescribed accuracy by using the
sufficient number of SaS.
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