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Abstract

The precise representation of arbitrarily large rigid-body motions in the displacement patterns of curved Timoshenko–Mindlin-type
(TM) shell elements has been considered in Part I of the present work. In Part II it has been developed an enhanced mixed finite element
formulation that allows using load increments that are much larger than possible with existing geometrically exact displacement-based
shell element formulations. In this paper the developed formulation is employed to solve frictionless contact problems for TM shells
undergoing finite deformations and interacting with rigid bodies. The contact conditions are incorporated into the assumed stress–strain
TM shell formulation by applying a perturbed Lagrangian procedure with the fundamental unknowns consisting of 6 displacements and
11 strains of the bottom and top surfaces of the shell, 11 conjugate stress resultants and the Lagrange multiplier, associated with a nodal
contact force, through using the non-conventional technique. The efficiency and accuracy of the proposed finite element formulation are
demonstrated by means of several numerical examples.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The considerable progress has been achieved in recent
years on the development of finite element procedures for
the geometrically non-linear shells with constraints [1–7]
in conjunction with the perturbed Lagrangian formulation,
which was originally proposed in papers [8,9]. This meth-
odology is discussed in detail in books [10,11]. However,
an implementation of such procedures to shells undergoing
finite deformations and contacting with rigid bodies of
arbitrary configurations may lead to inefficient computa-
tions because only small loading steps are available. This
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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is due to the simple fact that contact pressure is equal
exactly to the value of the Lagrange multiplier.

In the present paper it is developed the new non-linear
geometrically exact shell model with unilateral constraint
conditions, based on the enhanced finite element technique,
that a nodal contact force normal to the constraint surface
is associated with the Lagrange multiplier k as kjgradWj,
where W is the impenetrability function. This allows one
to use much larger load increments by employing non-lin-
ear geometrically exact TM shell elements [12,13]. It is
worth noting that in the case of the successful choice of
the initial contact zone a solution of the contact problem
can be obtained, as a rule, in one loading step for the extre-
mely large displacements and rotations, i.e., only the trial-
and-error procedure will work in conjunction with the
Newton iteration process of course.

The direct use of the conventional first-order TM shell
theory (see in this context a discussion in Refs. [12,14])
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for solving contact problems is not always convenient. In
such problems it is more convenient to select as unknown
functions the displacements of the bottom and top surfaces
of the shell, since by means of these displacements the kine-
matic requirement of no penetration of the contact bodies
is formulated. To overcome shear and membrane locking
and have no spurious zero energy modes, the assumed
strain and stress resultant fields are invoked. So, additional
fundamental unknowns have to be involved in the formu-
lation, namely, 11 strains of the outer surfaces and 11 con-
jugate stress resultants [12,14]. In order to circumvent
thickness locking, the ad hoc modified constitutive stiffness
matrix [15–18] corresponding to the general plane stress
state is employed.

Numerical results are presented to demonstrate the high
accuracy and effectiveness of the finite element formulation
developed and to compare its performance with other
state-of-the-art finite element formulations. For this pur-
pose three tests are employed. They are a plate in cylindri-
cal bending, a circular ring and a cylindrical shell in contact
with a rigid infinite cylinder.

2. Contact formulation for 3D shell

Consider a shell of the thickness h interacting with a
rigid body (Fig. 1). The shell may be defined as a 3D body
of volume V bounded by two surfaces S� and S+, located
at the distances d� and d+ measured with respect to the ref-
erence surface S, and the edge boundary surface X that is
perpendicular to the reference surface. The shell material
is assumed to be linearly elastic, anisotropic, homogeneous
or fiber reinforced, such that in each point there is a single
surface of elastic symmetry parallel to the reference surface.
Fig. 1. Shell in contact with rigid body.
Introduce the following notations: ui are the compo-
nents of the displacement vector; Sij are the components
of the second Piola–Kirchhoff stress tensor; eDS

ij are the
components of the Green–Lagrange strain tensor (we refer
to these strains as displacement-dependent strains); eAS

ij are
the components of the independently assumed strain tensor
(displacement-independent strains); Cij‘m are the compo-
nents of the elasticity tensor. Throughout this paper the
abbreviation ( ),i implies the partial derivatives with respect
to the coordinate xi; indices i, j, ‘, m take the values 1, 2
and 3, while Greek indices a, b, c, d take the values 1
and 2.

For general purposes we can treat the interaction
between a shell and many rigid bodies, but for the simplic-
ity we restrict ourselves to the frictionless contact problem
and one rigid body. The boundary of the immovable con-
vex body Sb is supposed to be sufficiently smooth and may
be written as

WðxÞ ¼ 0; ð1aÞ
where x = xiki is the position vector of the surface Sb.
Here, in accordance with the Einstein convention the sum-
mation on the repeated index is implied. We shall follow
this rule in the following developments.

For the external points of the rigid body it is assumed
that

WðxÞ > 0: ð1bÞ
We treat Eqs. (1a) and (1b) as the impenetrability condition
for the shell and rigid body. These equations express the
fact that when two bodies are in contact, then they must
either remain in contact according to Eq. (1a) or they must
separate in accordance with Eq. (1b). The impenetrability
condition (1) is highly non-linear for the finite deformation
shell problems but in our formulation may be usually ex-
pressed analytically in terms of displacements of the top
surface S+ and, therefore, is simply linearized. The surface
S+ consists of two distinct parts Sþ ¼ Sþf [ Sþc , where Sþf is
the part where surface tractions are prescribed and Sþc is the
part where a contact interaction is expected, whereas the
bottom surface S� ¼ S�f . So, no prescribed displacements
are imposed on both face surfaces.

Taking into account that no adhesion between the con-
tact surfaces in the normal direction may occur, the normal
contact tractions cannot be tensile

pþc ¼ �pþc � nb 6 0; ð2Þ

where nb is the unit normal vector to the body surface Sb.
Conditions (1) and (2) may be combined into a single

equation

pþc ðRþÞWðtRþÞ ¼ 0; ð3aÞ
tRþ ¼ Rþ þ uþ; uþ ¼ uþi ki; ð3bÞ

where R+ and tR+ are the position vectors of the top sur-
face S+ in initial and current shell configurations; u+ is
the displacement vector of the surface S+. The condition
(3) is called the unitary contact condition and expresses
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the fact that the contact forces exist only at points, where
the shell is in contact with the rigid body.

For the simplicity, we limit our discussion to the case of
zero body forces and dead loading. Furthermore, all pre-
scribed displacements on the edge boundary surface Xd

are assumed to be zero. To arrive at the assumed stress–
strain shell formulation without contact constraints, we
should invoke the stationarity of the Hu–Washizu func-
tional [19]

J HW ¼ stationary; ð4aÞ

J HW ¼
Z Z Z

V

1

2
eAS

ij Cij‘meAS
‘m � SijðeAS

ij � eDS
ij Þ

� �
dV

�
Z Z

R
piui dS �

Z Z
Xd

riui dS; ð4bÞ

where

eDS
ij ¼

1

2
ðui;j þ uj;i þ uk;iuk;jÞ: ð5Þ

Here, pi are the tractions applied to the surface
R ¼ S� [ Sþf [ Xf ; ri are the unknown tractions over the
edge boundary surface Xd defined as

ri ¼ Skjmjðdik þ ui;kÞ; ð6Þ

where mj are the components of the unit normal vector m.
In order to introduce the contact constraints (1) into a

variational formulation, we consider the modified Hu–
Washizu functional (one refers to it as a perturbed
Lagrangian [8])

J PL ¼ stationary; ð7aÞ

J PL ¼ J HW þ
Z Z

Sþc

kWðtRþÞ � k2

2�

� �
dS; ð7bÞ

where k(R+) is the Lagrange multiplier; � is the positive
penalty parameter. The penalty term serves the purpose
of the regularization of the classical Lagrangian and
amounts to approximating the rigid body by continuously
distributed springs of the stiffness 1/�. Note that in the limit
�!1 one arrives at the pure Lagrangian formulation [20].

By invoking the stationarity of the functional JPL with
respect to the independent variables, we obtainZ Z Z

V
½deAS

ij ðSij � Cij‘meAS
‘m Þ þ dSijðeAS

ij � eDS
ij Þ�dV

�
Z Z Z

V
SijdeDS

ij dV þ
Z Z

R
pidui dS

þ
Z Z

Xd

ðdriui þ riduiÞdS

�
Z Z

Sþc

kdWðtRþÞ þ dk WðtRþÞ � 1

�
k

� �� �
dS ¼ 0: ð8Þ

Next we prove a fundamental result concerning the rela-
tion between normal contact tractions and a Lagrange
multiplier.
Proposition 1. The following closed-form expression for the

normal contact force holds:

pþc ¼ kðRþÞjgradWðtRþÞj: ð9Þ

Proof. Substituting strains (5) into the second 3D integral
(8) and applying Gauss’ theorem with account for relations
(2) and (6), one derives

pþc � duþ ¼ �kdWðtRþÞ: ð10Þ

By using Eq. (3b) a variation of the impenetrability func-
tion can be represented as

dWðtRþÞ ¼ gradWðtRþÞ � duþ: ð11Þ

Comparing Eqs. (10) and (11) yields

pþc ¼ �kgradWðtRþÞ: ð12Þ

The required formula (9) immediately follows from Eqs. (2)
and (12). h

It should be observed that Eq. (9) allows one to use
much larger load increments compared to conventional
shell formulations under unilateral constraints.
3. Contact formulation for TM shell

Let the reference surface S be referred to the orthogonal
curvilinear coordinate system a1 and a2, which coincides
with the lines of principal curvatures of its surface, whereas
the coordinate a3 is oriented along the unit vector e3 nor-
mal to the reference surface; ea are the tangent unit vectors
to the lines of principal curvatures (Fig. 1); Aa are the Lamé
coefficients of the reference surface.

The finite deformation TM shell theory [13] is based on
the linear approximation of displacements in the thickness
direction (Timoshenko–Mindlin kinematics)

tR ¼ N�tR� þ NþtRþ; ð13aÞ
tR� ¼ R� þ v�; R� ¼ rþ d�e3; ð13bÞ
v� ¼ v�i ei; ð13cÞ

N� ¼ 1

h
ðdþ � a3Þ; Nþ ¼ 1

h
ða3 � d�Þ; ð13dÞ

where r(a1,a2) is the position vector of the reference sur-
face; R± and tR± are the position vectors of the face sur-
faces S± in initial and current shell configurations; v± are
the displacement vectors of the face surfaces; v�i ða1; a2Þ
are the components of these vectors, which are always mea-
sured in accordance with the total Lagrangian formulation
from the initial configuration to the current configuration
directly; N±(a3) are the linear through-thickness shape
functions. It is remarkable that displacement vectors
(13c) are resolved in the orthonormal reference surface
basis ei that allows one to reduce the costly numerical inte-
gration by deriving the elemental stiffness matrix.

We represent further the impenetrability condition (1) in
curvilinear reference surface coordinates. Let the Cartesian
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coordinate frame be defined by the unit base vectors ki

(Fig. 1). The needed vectors in this frame are given by

r ¼ riki;
tRþ ¼ tRþi ki; ei ¼ tijkj; ð14Þ

where T = [tij(a1,a2)] is the transformation matrix. Using
Eqs. (13b), (13c) and (14) one derives

tRþi ¼ ri þ dþt3i þ tjivþj : ð15Þ

So, the kinematic condition of no penetration and a varia-
tion of the impenetrability function (11) may be written as

Wða1; a2; vþi ÞP 0; ð16Þ

dW ¼ oW
ovþi

dvþi : ð17Þ

Substituting displacements (13), displacement-depen-
dent and displacement-independent strains [13] and a vari-
ation of the impenetrability function (17) into variational
equation (8), and introducing stress resultants and external
loading resultants

H�ab ¼
Z dþ

d�
SabN� da3; H�a3 ¼

Z dþ

d�
Sa3N� da3;

H 33 ¼
Z dþ

d�
S33 da3; bH �

m� ¼
Z dþ

d�
q�N� da3

ð� ¼ m; t and 3Þ; ð18Þ

one can obtain the mixed variational equation for the TM
shell element under unilateral constraintsZ Z

Sel

½dETðH�DEÞþdHTðE�EÞ�dETHþdvTP��ldn1 dn2

�dJ cþ
I

Cel

dvT
C
bHC�cds¼ 0; ð19aÞ

dJ c¼
Z Z

Sel
c

dgdn1 dn2; dg¼ �l dvTkUþdk W�1

�
k

� �� �
:

ð19bÞ
Fig. 2. Four-node TM shell element. P 1ðaþel
1 ; aþel

2 Þ; P 2ða�el
1 ; aþel

2 Þ; P
In relations (19) the following notations are introduced:

v ¼ ½v�1 vþ1 v�2 vþ2 v�3 vþ3 �
T
; vC ¼ ½v�m vþm v�t vþt v�3 vþ3 �

T
;

ð20Þ
E ¼ ½E�11 Eþ11 E�22 Eþ22 2E�12 2Eþ12 2E�13 2Eþ13 2E�23 2Eþ23 E33�T;
E ¼ ½E�11 Eþ11 E�22 Eþ22 2E�12 2Eþ12 2E�13 2Eþ13 2E�23 2Eþ23 E33�T;
H ¼ ½H�11 Hþ11 H�22 Hþ22 H�12 Hþ12 H�13 Hþ13 H�23 Hþ23 H 33�T;bHC ¼ ½ bH �mm bH þmm bH �mt

bH þmt
bH �

m3
bH þm3�

T
;

P ¼ ½�p�1 pþ1 � p�2 pþ2 � p�3 pþ3 �
T
;

U ¼ 0
oW
ovþ1

0
oW
ovþ2

0
oW
ovþ3

� �T

; �l ¼ Ael
1 Ael

2 ;

�c ¼ 1þ kN
�d; �d ¼ 1

2
ðd� þ dþÞ;

where Ael
a ¼ Aa‘

el
a ð1þ ka

�dÞ are the Lamé coefficients of the
midsurface Sel of the element (no summation is used);
nc ¼ ðac � del

c Þ=‘
el
c are the curvilinear normalized coordi-

nates (Fig. 2); del
c ¼ ða�el

c þ aþel
c Þ=2 are the coordinates of

the center of the element; 2‘el
c ¼ aþel

c � a�el
c are the lengths

of the element; ka are the principal curvatures of the refer-
ence surface Sel of the element; kN is the normal curvature
of the bounding curve Cel � Sel; �d is the distance from the
reference surface to the midsurface; v�m ; v

�
t and v�3 are the

components of the displacement vectors of the face sur-
faces in the coordinate system m, t and a3 (Fig. 1); qm, qt

and q3 are the tractions applied to the edge boundary sur-
face Xel ¼ Xel

f ; p�i are the tractions acting on the face sur-
faces S±el; E�ab;E

�
a3 and E33 are the components of the

Green–Lagrange strain tensor of the face surfaces [13];
E�ab;E

�
a3 and E33 are the components of the independently

assumed strain tensor of the face surfaces; D is the consti-
tutive stiffness matrix defined in Refs. [13,17].

Remark 1. The integrals in variational equation (8) have
been simplified under the following assumption: the metrics
of all surfaces parallel to the reference surface are identical
and equal to the metric of the midsurface. It is a reasonable
assumption for the thin-walled shell structures.
3ða�el
1 ; a�el

2 Þ; P 4ðaþel
1 ; a�el

2 Þ are the nodal points of the element.
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Remark 2. To circumvent thickness locking, the more
robust remedy compared to Refs. [12,13] has been
employed. This remedy consists of using the ad hoc modi-
fied constitutive stiffness matrix DPS, corresponding to
the generalized plane-stress condition [15–18], instead of
the matrix D in variational equation (19). The advantage
of such approach is that the simplified constitutive stiffness
matrix possesses the symmetric structure, which is best sui-
ted for the finite element application to contact problems
(see for detail [17]).
4. Finite element formulation

For the simplest four-node curved solid-shell element the
displacement field is approximated according to the stan-
dard C0 interpolation

v ¼
X

r

N rvr; ð21Þ

where vr ¼ ½v�1r vþ1r v�2r vþ2r v�3r vþ3r�
T are the displacement vec-

tors of the element nodes; Nr(n1,n2) are the bilinear shape
functions of the element; the subscript r denotes a number
of nodes and runs from 1 to 4. The load vector is also as-
sumed to vary bilinearly inside the element.

In a result for the displacement-dependent strains we
have the following approximation [13]:

E ¼
X
s1;s2

ns1
1 ns2

2 Es1s2 ; ð22aÞ

Es1s2 ¼ ðBs1s2 þ As1s2 VÞV; Bs1s2 ¼ 0 for s1 ¼ 2 or s2 ¼ 2;

Es1s2 ¼ ½E�s1s2
11 Eþs1s2

11 E�s1s2
22 Eþs1s2

22 2E�s1s2
12 2Eþs1s2

12

2E�s1s2
13 2Eþs1s2

13 2E�s1s2
23 2Eþs1s2

23 Es1s2
33 �

T
;

ð22bÞ

where V ¼ ½vT
1 vT

2 vT
3 vT

4 �
T is the displacement vector at no-

dal points of the element; Bs1s2 are the matrices of order
11 · 24 corresponding to the linear strain–displacement
transformation; As1s2 are the 3D arrays of order
11 · 24 · 24 corresponding to the non-linear strain–dis-
placement transformation, involved in the formulation to
simplify the matrix routine; As1s2 V are the matrices of order
11 · 24 and HAs1s2 are the symmetric matrices of order
24 · 24, whose components are defined as

ðAs1s2 VÞn1n2
¼
X

n3

As1s2
n1n2n3

V n3
; ðHAs1s2Þn2n3

¼
X

n1

Hn1
As1s2

n1n2n3
;

As1s2
n1n2n3

¼ As1s2
n1n3n2

ðfor n1 ¼ 1; 11 and n2; n3 ¼ 1; 24Þ:

ð23Þ

Throughout this section superscripts s1, s2 take the values
0, 1 and 2. From Eq. (23) follows the noteworthy
transformation

ðAs1s2 VÞTH ¼ ðHAs1s2ÞV ð24Þ

to be used for evaluating the element stiffness matrix.
Note that the described non-linear four-node curved
solid-shell element a bit stiff in a case of using coarse
meshes and some additional numerical procedure needs
to be applied. The best solution of the problem is to
employ the modified ANS method [13]. The main idea
of such approach can be traced back to the ANS method
proposed by Hughes and Tezduyar [21] for the linear dis-
placement-based formulation and further developed by
many scientists for the linear and non-linear displace-
ment, hybrid and mixed finite element formulations. In
contrast with above formulations we treat the term
ANS formulation in the broad sense. In our formulation
all components of the displacement-dependent strain ten-
sor are assumed to vary bilinearly inside the element [13]
instead of the expected biquadratic interpolation (22a)
typical for the non-linear four-node solid-shell elements,
that is,

EANS ¼ E00 þ E02 þ E20 þ E22 þ n1ðE10 þ E12Þ

þ n2ðE01 þ E21Þ þ n1n2E
11: ð25Þ
For evaluating the integral (19b) it is convenient to
employ the simplest numerical scheme
dJ c ¼
X

r

dgr ¼
X

r

�lr dvT
r krUr þ dkr Wr �

1

�
kr

� �� �
; ð26Þ

where

Ur ¼ 0
oWr

ovþ1r

0
oWr

ovþ2r

0
oWr

ovþ3r

� �T

;
oWr

ovþir
¼ oW

ovþi
ðP rÞ;

Wr ¼ WðP rÞ: ð27Þ
This is due to the bilinear interpolation of the function dg

from Eq. (19b):
dg ¼
X

r

N rdgr; ð28Þ
where dgr are the nodal values of this function. The pro-
posed scheme gives an opportunity to eliminate nodal
Lagrange parameters kr at the element level and leads to
the governing system of linear algebraic equations with
the symmetric stiffness matrix.

Remark 3. In Refs. [6,7], in contrast with the developed
TM shell formulation with unilateral constraints, the
Lagrange multiplier k has been approximated according
to the bilinear law. As a result, the nodal Lagrange
parameters kr are not eliminated on the local level and
difficulties, associated with the equation system whose size
varies during the solution process, can occur.

To avoid shear and membrane locking and have no spu-
rious zero energy modes, the assumed strain and stress
resultant fields inside the element [12] are introduced
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E¼
X
r1 ;r2

nr1
1 nr2

2 Qr1r2 Er1r2 ; H¼
X
r1 ;r2

nr1
1 nr2

2 Qr1r2 Hr1r2 ; ð29Þ

E00¼ ½E�00
11 Eþ00

11 E�00
22 Eþ00

22 2E�00
12 2Eþ00

12 2E�00
13 2Eþ00

13 2E�00
23 2Eþ00

23 E00
33�

T
;

E01¼ ½E�01
11 Eþ01

11 2E�01
13 2Eþ01

13 E01
33�

T
;

E10¼ ½E�10
22 Eþ10

22 2E�10
23 2Eþ10

23 E10
33�

T
; E11¼ ½E11

33�;
H00¼ ½H�00

11 Hþ00
11 H�00

22 Hþ00
22 H�00

12 Hþ00
12 H�00

13 Hþ00
13 H�00

23 Hþ00
23 H 00

33�
T
;

H01¼ ½H�01
11 Hþ01

11 H�01
13 Hþ01

13 H 01
33�

T
;

H10¼ ½H�10
22 Hþ10

22 H�10
23 Hþ10

23 H 10
33�

T
; H11¼ ½H 11

33�;
ð30Þ

where Q00 is the identity matrix of order 11 · 11; Q01 and
Q10 are the matrices from zeros and units of order 11 · 5,
and Q11 is the matrix of order 11 · 1 defined in Ref. [12].
Throughout this section superscripts r1, r2 take the values
0 and 1.

Substituting approximations (21), (25), (26) and (29)
into mixed variational equation (19a) and using a standard
variational procedure, one obtains the governing system of
non-linear algebraic equations of the developed finite ele-
ment formulation

Er1r2 ¼ ðQr1r2ÞTðBr1r2 þ Rr1r2 VÞV; ð30aÞ
Hr1r2 ¼ ðQr1r2ÞTDQr1r2 Er1r2 ; ð30bÞX
r1;r2

1

3r1þr2
ðBr1r2 þ 2Rr1r2 VÞTQr1r2 Hr1r2 þ NK ¼ F; ð30cÞ

where F is the force vector corresponding to the standard
displacement-based formulation; K is the Lagrange multi-
plier vector at nodal points; Rr1r2 are the 3D arrays of order
11 · 24 · 24 defined as

R00 ¼ A00 þ A02 þ A20 þ A22; R01 ¼ A01 þ A21;

R10 ¼ A10 þ A12; R11 ¼ A11; K ¼ ½k1k2k3k4�T;

N ¼ 1
4

U1 O6�1 O6�1 O6�1

O6�1 U2 O6�1 O6�1

O6�1 O6�1 U3 O6�1

O6�1 O6�1 O6�1 U4

2666664

3777775:
ð31Þ

Additionally, according to Eqs. (3a), (12) and (26) the fol-
lowing relations need to be involved into the finite element
formulation:

Wr ¼
1

�
kr; kr 6 0 for r 2 IC; ð32aÞ

Wr > 0; kr ¼ 0 for r 62 IC; ð32bÞ

where IC � {1, 2,3,4} denotes a set of contacting nodes.
Up to this moment, no incremental arguments are

needed in the total Lagrangian formulation. These argu-
ments are required for solving non-linear equilibrium
equations (30) with constraints (32) on the basis of the
Newton–Raphson method. Further, the left superscripts t

and t + Dt indicate in which configuration at time t or time
t + Dt a quantity occurs. Then, in accordance with this
agreement we have

tþDtV ¼ tVþ DV; tþDtF ¼ tFþ DF; tþDtK ¼ tKþ DK;
tþDtEr1r2 ¼ tEr1r2 þ DEr1r2 ; tþDtHr1r2 ¼ tHr1r2 þ DHr1r2 :

ð33Þ

Substituting (33) in Eq. (30) and taking into account
that the external loads and second Piola–Kirchhoff stresses
constitute the self-equilibrated system in a configuration at
time t, one can obtain the following incremental equations:

DEr1r2 ¼ðQr1r2ÞTðtMr1r2 þRr1r2DVÞDV; ð34aÞ
DHr1r2 ¼Dr1r2DEr1r2 ; ð34bÞX
r1 ;r2

1

3r1þr2
½2ðRr1r2DVÞTQr1r2 tHr1r2 þðtMr1r2 þ2Rr1r2DVÞTQr1r2DHr1r2 �

þNjtþDtV
tþDtK¼DFþNjtV tK; ð34cÞ

where

Dr1r2 ¼ Qr1r2 Dr1r2ðQr1r2ÞT; Dr1r2 ¼ ðQr1r2ÞTDQr1r2 ;
tMr1r2 ¼ Br1r2 þ 2Rr1r2 tV: ð35Þ

From relations (32) one finds

WrjtþDtV ¼
1

�
tþDtkr;

tþDtkr 6 0 for r 2 tþDtIC; ð36aÞ

WrjtþDtV > 0; tþDtkr ¼ 0 for r 62 tþDtIC ð36bÞ

and, therefore,

tþDtkr ¼
�WrjtþDtV for r 2 tþDtIC;

0 for r 62 tþDtIC;

�
ð37Þ

where t+DtIC is the set of unknown a priori contact nodes at
time t + Dt.

Using (37) we eliminate nodal Lagrange parameters
t+Dtkr from Eq. (34c)

X
r1;r2

1

3r1þr2
½2ðRr1r2DVÞTQr1r2 tHr1r2

þ ðtMr1r2 þ 2Rr1r2DVÞTQr1r2DHr1r2 � þ �ðNPÞjtþDtV

¼ DFþ NjtVtK; ð38Þ

where

P ¼ ½P1 P2 P3 P4�T; ð39aÞ

Pr ¼
Wr for r 2 tþDtIC;

0 for r 62 tþDtIC:

�
ð39bÞ

Due to existence of non-linear terms in Eqs. (34) and
(38), the Newton–Raphson iteration process should be
employed

DV½nþ1� ¼ DV½n� þ DV½n�; DEr1r2½nþ1� ¼ DEr1r2½n� þ DEr1r2½n�;

DHr1r2½nþ1� ¼ DHr1r2½n� þ DHr1r2½n� ðn ¼ 0; 1; . . .Þ ð40Þ
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to solve these equations

DEr1r2½n� � ðQr1r2ÞTtLr1r2½n�DV½n�

¼ ðQr1r2ÞTðtLr1r2½n� � Rr1r2DV½n�ÞDV½n� � DEr1r2½n�; ð41aÞ
DHr1r2½n� �Dr1r2DEr1r2½n�

¼ Dr1r2DEr1r2½n� � DHr1r2½n�; ð41bÞX
r1;r2

1

3r1þr2
½2ðRr1r2DV½n�ÞTQr1r2ðtHr1r2 þ DHr1r2½n�Þ

þ ðtLr1r2½n�ÞTQr1r2DHr1r2½n�� þ �KCDV½n�

¼ DF�
X
r1;r2

1

3r1þr2
½2ðRr1r2DV½n�ÞTQr1r2 tHr1r2

þ ðtLr1r2½n�ÞTQr1r2DHr1r2½n�� � �ðNPÞjtVþDV½n� þ NjtV tK;

ð41cÞ

where

tLr1r2½n� ¼ Br1r2 þ 2Rr1r2ðtVþ DV½n�Þ ¼ tMr1r2 þ 2Rr1r2DV½n�;

ð42aÞ

KC ¼

æ1 O6�6 O6�6 O6�6

O6�6 æ2 O6�6 O6�6

O6�6 O6�6 æ3 O6�6

O6�6 O6�6 O6�6 æ4

26664
37775; ð42bÞ

where ær are the matrices of order 6 · 6 defined as

ær ¼ O6�6 for r 62 tþDtIC: ð43aÞ
The non-zero components of the remaining matrices are
found by

ðærÞ2i;2j ¼ Wr
o2Wr

ovþirovþjr
þ oWr

ovþir

oWr

ovþjr

 !
jtVþDV½n�

for r 2 tþDtIC: ð43bÞ

Eliminating further incremental strains DEr1r2½n� and
stress resultants DHr1r2½n� from Eq. (41) and taking into
account the transformation (24), one derives linear alge-
braic equations

KDV½n� ¼ DF½n�; ð44Þ
where

DF½n� ¼ DF�
X
r1;r2

1

3r1þr2
½ðtLr1r2½n�ÞTDr1r2ðtLr1r2½n� �Rr1r2DV½n�Þ

þ 2ðQr1r2 tHr1r2ÞRr1r2 �DV½n� � �ðNPÞjtVþDV½n� þNjtVtK:

ð45Þ

As usual in the finite element literature K = KD +
KH + �KC denotes the elemental stiffness matrix defined
by Eq. (42b) and

KD ¼
X
r1;r2

1

3r1þr2
ðtLr1r2½n�ÞTDr1r2 tLr1r2½n�; ð46aÞ

KH ¼ 2
X
r1;r2

1

3r1þr2
ðQr1r2 tHr1r2 þQr1r2DHr1r2½n�ÞRr1r2 : ð46bÞ
We give also a formula that is used in the numerical
algorithm for computation of incremental stress resultants
at the nth iteration step

Qr1r2DHr1r2½n� ¼ Dr1r2 ½ðtMr1r2 þ 2Rr1r2DV½n�1�ÞDV½n�

� ðRr1r2DV½n�1�ÞDV½n�1��: ð47Þ

This formula holds for n P 1 while at the beginning of the
first iteration one should set

DV½0� ¼ 0 and DHr1r2½0� ¼ 0: ð48Þ
Allowing for relations (42), (45)–(48) the equilibrium

equation (44) for each element are assembled by the usual
technique to form the global incremental equilibrium equa-
tions. These incremental equations should be performed
until the required accuracy of the solution can be obtained.
The convergence criterion used here can be described as

kr½n�k < ekr½0�k; ð49Þ
where r[n] is the residual; kÆk is the Euclidean norm; e is the
prescribed tolerance.

It is apparent that the contact non-linearity arises
already during the finite element discretization. This is
due to the fact that a set of all contact nodes after the
assembly procedure tþDtIA

C � f1; 2; . . . ;N nodeg is unknown
a priori. To solve this problem, a trial-and-error procedure
[10] has to be employed at each load step. Suppose that all
contact nodes at time t + Dt are known and, therefore, one
can find a solution of the governing equations iteratively
satisfying the convergence criteria (49). Since the global
displacement vector t+DtU is known, we may verify
inequalities

WLjtþDtU > 0 for L 2 tþDtIA
C ; ð50aÞ

WLjtþDtU 6 0 for L 62 tþDtIA
C : ð50bÞ

If (50a) holds then such node is the error node and it is dis-
carded. In the case of the fulfilment of (50b) a node is in-
volved into a set tþDtIA

C. This process is repeated until a
correct solution without error nodes can be found.

5. Numerical examples

The performance of the developed geometrically exact
assumed stress–strain solid-shell element TMS4HC is eval-
uated with several benchmark problems extracted from the
literature and authors’ examples as well. These problems
are a plate in cylindrical bending, a circular ring and a
cylindrical shell, which contact with movable and immov-
able rigid cylinders.

Unless specified otherwise, in all numerical problems the
tolerance error from criterion (49) is set to be e = 10�10.
Besides, in this section we use the following abbreviations:
NLSt is a number of load steps employed to equally divide
the maximum load; NTESt is a total number of trial-and-
error steps needed for all loading increments; NNEt is a
total number of Newton iterations.
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5.1. Cylindrical bending of plate in contact with rigid

cylinder

Consider first cylindrical bending of the isotropic plate
contacting with movable (problem A) and immovable
(problem B) rigid cylinders of the sufficiently large radius
Rb = 1000. The geometrical and mechanical data of the
contact problem are shown in Fig. 3. Due to symmetry
of both problems, only half of the plate is discretized by
the 100 · 1 mesh of TMS4HC elements. To solve problem
A, the following boundary conditions have been used:
Fig. 3. Cylindrical bending of isotropic plate in contact with rigid
cylinder: (a) Problem A (movable cylinder) and (b) Problem B (immovable
cylinder).

Table 1
Displacements and forces of plate in contact with rigid cylinder of radius Rb =

Parameter Linear plate Non-linear p

Problem A Problem B Problem A

D 3.765a 0.0 3.765
vþ3 ðLÞ 0.0 3.765 0.0
P 0.3403
Pc 0.3403 0.3403 0.3405

a Underlined numbers are input data for each problem.

Table 2
Distribution of contact pressure pþc L=P anal for plate interacting with rigid cylin
� = 105), where Panal = 0.3403 [22]

x1 Linear plate Non-linear pla

Problem A Problem B Problem A

10 0.019 0.022 0.003
11 0.954 0.964 0.789
12 3.639 3.669 3.139
13 10.21 10.28 9.113
14 20.06 20.13 18.90
15 15.11 14.94 18.06
v�1 ð0Þ ¼ 0 and vþ3 ðLÞ ¼ 0: ð51Þ

The input data for each problem were taken from the ana-
lytical solution [22] derived for the geometrically linear
plate interacting with a movable cylinder through the
assumption that a contact zone is known and equal to
[0,15]. In a result there were found the cylinder displace-
ment D and contact pressure resultant

P c ¼ 2

Z L

0

kdx1; ð52aÞ

whose value of 0.3403 was used as an input value for prob-
lem B. At the same time for the calculation of the contact
pressure resultant in the geometrically non-linear case we
have employed the more general formula

P c ¼ 2

Z L

0

k
oW
ovþ3

dx1: ð52bÞ

The impenetrability condition for the geometrically non-
linear plate has been taken in a form

W ¼ 1

2Rb

ðx1 þ vþ1 Þ
2 þ 1

2Rb

ðvþ3 � Rb þ DÞ2 � 1

2
Rb P 0:

ð53Þ

Tables 1 and 2 list the results of solving both geometri-
cally linear and non-linear contact problems. It should
be mentioned that contact pressure [22] does not vanish
at the end of the contact zone. This contradiction can
be easily explained, since no regularization terms were
introduced in contact conditions under analytical
developments.

Further we consider a finite deformation problem for
the plate contacting with the immovable cylinder of the
small radius Rb = 100. Due to symmetry, one half of the
1000 (modeled by 100 · 1 mesh and penalty parameter � = 105)

late Analytical solution for problem A [22]

Problem B

0.0 3.765
3.759 0.0
0.3403
0.3404 0.3403

der of radius Rb = 1000 (modeled by 100 · 1 mesh and penalty parameter

te Analytical solution for problem A [22]

Problem B

0.036 0.223
0.943 0.920
3.605 3.099

10.13 8.839
19.97 20.68
15.31 33.25



Table 3
Convergence study for non-linear plate (Problem B) in contact with rigid cylinder of radius Rb = 100 by using 50 · 1 mesh

P Trial contact zone Penalty parameter � NLSt NTESt NNEt Actual contact zone �v3ðLÞ
2 {0} 103 1 1 4 {0} 21.65
2 {0} 105 1 1 8 {0} 21.65
4 {0} 103 1 21 85 [0,4] [ [16,20] 36.73
4 {0} 105 1 22 108 [0,10] [ [16,20] 36.73
6 {0} 103 2 34 122 [0,30] [ [38,42] 41.26
6 {0} 105 3 46 160 [0,34] [ [38,42] 41.26
6 [0,50] 103 1 7 28 [0,30] [ [38,42] 41.26
6 [0,50] 105 1 9 58 [0,34] [ [38,42] 41.26
8 {0} 103 3 53 191 [0,44] [ [50,54] 42.98
8 {0} 105 4 60 200 [0,54] 42.98
8 [0,50] 103 1 8 44 [0,44] [ [50,54] 42.98
8 [0,50] 105 2 46 204 [0,54] 42.98

Fig. 5. Distribution of contact pressure over deformed top plate surface
tS+ for Rb = 100 and � = 103 (modeled by 50 · 1 mesh).
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plate is modeled with the uniform 50 · 1 mesh of TMS4HC
elements. Table 3 lists the convergence study, where �v3

denotes the transverse midplane displacement. One can
see that in the case of the successful choice of the trial con-
tact zone only one loading step is needed to find a plate
response for the extremely large rotations and displace-
ments. Let us pay attention to the sufficiently large number
of Newton iterations for � = 105 because large values of the
penalty parameter lead to ill-conditioning of the governing
system of equations. The effect of the magnitude of the
penalty parameter � on the accuracy of the contact pressure
distribution over a deformed top surface is displayed in
Figs. 4 and 5. As can be seen from Fig. 4, the distribution
of contact pressure is highly sensitive to a choice of the pen-
alty parameter. Additionally, the variation of the contact
region with loading is shown in Fig. 6. As it turned out
in the range of the loading parameter P = 4–12 there are
two contact zones exactly.
5

10

L
oa

d 
P

Initial     and last     points of 

Rb=100
310=∈
5.2. Circular ring in contact with rigid cylinder

A circular isotropic ring pressed down against a rigid
plate by a transverse force P at the apex was used as a
benchmark problem for numerical testing the geometrically
non-linear structures with unilateral constraints in Refs.
[3,6,23]. But we study the more general case of contact con-
Fig. 4. Distribution of contact pressure over deformed top plate surface
tS+ for Rb = 100 and P = 6 (modeled by 50 · 1 mesh).

0 20 40 60 80
α1

0

first contact zone 
Initial     and last     points of
second contact zone

Fig. 6. Plate in contact with rigid cylinder. Variation of contact region
with loading.
straints as shown in Fig. 7. The impenetrability conditions
can be represented as

W ¼ tR3 P 0;

tR3 ¼ Rþ 1

2
h

� �
ð1� cos a1Þ þ vþ1 sin a1 � vþ3 cos a1

ð54aÞ
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Fig. 7. Circular ring in contact with rigid cylinder: (a) geometry E = 104,
m = 0, R = 100, b = 1, h = 1) and deformed configurations (modeled by
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for a rigid plate, when Rb =1, and

W ¼ 1

2Rb

ðtR1Þ2 þ
1

2Rb

ðtR3 þ RbÞ2 �
1

2
Rb P 0;

tR1 ¼ Rþ 1

2
h

� �
sin a1 þ vþ1 cos a1 þ vþ3 sin a1

ð54bÞ

for a rigid cylinder of the radius Rb.
Owing to symmetry of the problem, only one half of the

ring is discretized by regular 30 · 1 and 60 · 1 meshes of
TMS4HC elements. It has been discovered that the defor-
mation of the ring is inextensional in all ranges of the
parameter Rb because the total strain energy is practically
equal to the bending energy. Table 4 lists the convergence
results for the ring and rigid cylinder of the radius
Rb = 1000, which can be obtained again by using only
one load step. It is seen that a value of 88.61 computed
Table 4
Convergence study for circular ring subjected to dimensionless load eP ¼ 88:5
d1 = [10u0,12u0] and d2 = [11u0,12u0]

Trial contact zone Mesh Penalty parameter � NLSt

{0}a 30 · 1 100 2
{0}a 30 · 1 104 5
{0}a 60 · 1 100 2
{0}a 60 · 1 104 5
{0} [ d1 30 · 1 100 1
{0} [ d1 60 · 1 100 1

a Tolerance error is set to be e = 10�8.
for the dimensionless contact pressure resultant eP c ¼
120P cR2=Eh3b employing the fine mesh, where

P c ¼ 2bR
Z p

0

k � oW
ovþ1

sin a1 þ
oW
ovþ3

cos a1

� �
da1; ð55Þ

agrees closely with an exact value of 88.50 of the dimen-
sionless pinched load eP ¼ 120PR2=Eh3b. Fig. 8 displays
load–displacement curves for all considered cases of con-
tact constraints and a comparison with results of Noor
and Kim [3], where �vA

3 denotes the transverse midcircle dis-
placement at the top section A. For the complete picture
Fig. 9 shows the variation of the contact region with load-
ing. One can see that only a small part of the outer circle of
the ring remains in contact, especially for the cylinder of
the large curvature. This cannot be observed in Fig. 7
because gaps between bodies are very small.
5.3. Cylindrical shell in contact with rigid infinite cylinder

Finally, we consider a cylindrical shell subjected to the
conservative concentrated load at its central section and
interacting with a rigid plate and infinite cylinders of large
and small radii. The first problem was earlier investigated
in Ref. [6], where it is reported that the deformation of
and interacting with rigid cylinder of radius Rb = 1000, where u0 = p/60,

NTESt NNEt Actual contact region eP c ��vA
3

23 117 {0} [ d1 88.95 198.3
31 152 {0} [ d1 88.95 198.3
31 163 [0,u0] [ d1 88.61 198.8
57 210 [0,u0] [ d2 88.61 198.8

1 8 {0} [ d1 88.95 198.3
3 24 [0,u0] [ d1 88.61 198.8
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Fig. 9. Circular ring in contact with rigid cylinder. Variation of contact
region with loading (modeled by 60 · 1 mesh) for (a) Rb =1, (b)
Rb = 1000 and (c) Rb = 100.

Fig. 10. Cylindrical shell in contact with rigid cylinder: (a) geometry
(E = 104, v = 0.3, R = 100, L = 200, h = 1) and (b) deformed configura-
tion (modeled by 20 · 60 mesh; Rb = 1000, eP ¼ 87:36, � = 102).
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the shell, as in the previous example, is almost inexten-
sional. The geometrical and material characteristics of the
problem are given in Fig. 10. The impenetrability condi-
tions can be written as

W ¼ tR3 P 0;

tR3 ¼ Rþ 1

2
h

� �
ð1� cos a2Þ þ vþ2 sin a2 � vþ3 cos a2

ð56aÞ

for a rigid plate and

W ¼ 1

2Rb

ða1 þ vþ1 Þ
2 þ 1

2Rb

ðtR3 þ RbÞ2 �
1

2
Rb P 0 ð56bÞ

for a rigid cylinder.
Due to symmetry of the problem, only one quarter of

the shell is modeled with uniform meshes. Table 5 lists
the convergence study for the rigid cylinder of radius
Rb = 1000. Herein, �vA

3 and �vB
3 denote the transverse mid-

surface displacements at points A and B, whereaseP ¼ 120ð1� m2ÞPR2=Eh3L is the dimensionless force andeP c ¼ 120ð1� m2ÞP cR2=Eh3L is the dimensionless contact
pressure resultant, where

P c ¼ 4R
Z p

0

Z L=2

0

k
oW
ovþ3

cos a2 �
oW
ovþ2

sin a2

� �
da1 da2:

ð57Þ

As can be seen, in the case of the robust choice of the trial
contact zone again only one loading step is required to ob-
tain a converged solution, when a point A practically



Table 5
Convergence study for cylindrical shell subjected to dimensionless load eP ¼ 87:36 and interacting with rigid cylinder of radius Rb = 1000, where
d1 = [0,40] · {7p/30} and d2 = {40} · [0,7p/30]

Trial contact zone Mesh Penalty parameter 2 NLSt NTESt NNEt eP c ��vA
3 ��vB

3

{0} · {0}a 10 · 30 100 3 43 261 87.76 195.0 194.2
{0} · {0}a 10 · 30 102 3 55 314 87.76 195.0 194.2
{0} · {0}a 20 · 60 100 3 39 249 87.46 196.1 195.2
{0} · {0}a 20 · 60 102 3 89 551 87.46 196.1 195.1
d1 [ d2 10 · 30 100 1 8 64 87.76 195.0 194.2
d1 [ d2 10 · 30 102 1 7 53 87.76 195.0 194.2
d1 [ d2 20 · 60 100 1 11 88 87.46 196.1 195.2
d1 [ d2 20 · 60 102 1 13 91 87.46 196.1 195.1

a Tolerance error is set to be e = 10�9.
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comes into ‘‘contact’’ with the constraint surface. Addi-
tionally, Fig. 11 and Table 6 represent load–displacement
curves and contact regions for all studied unilateral
constraints.
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Fig. 11. Cylindrical shell in contact with rigid cylinder. Top load versus
transverse displacement of midsurface at section A.

Table 6
Cylindrical shell subjected to dimensionless load eP ¼ 87:36 and interac
aa

1 ¼ 15; 20 and 25, ab
1 ¼ 55; 60; 65 and 70, and ac

1 ¼ 75 and 80

a1 Circumferential coordinate a2

0 p
60

2p
60

3p
60

4p
60

5p
60

6p
60

7p
60

0 h h h h h h h

5 n

10 n

aa
1

30 n n n n

35 n n n n

40 s s s s s s n

45 s s

50
ab

1

ac
1

Symbols s (Rb =1), n (Rb = 1000) and h (Rb = 100) exhibit contact nodes
6. Conclusions

The geometrically exact TM shell formulation has been
developed for the analysis of thin-walled shell structures
undergoing finite deformations and interacting with rigid
bodies. The finite element model is based on the perturbed
Lagrangian formulation and enhanced finite element tech-
nique that a nodal contact force normal to the constraint
surface is associated with the Lagrange multiplier k as
kjgradWj, where W denotes the impenetrability function.
This allows using much larger load increments by employ-
ing authors’ geometrically exact assumed stress–strain shell
formulation compared to conventional isoparametric solid-
shell and degenerated-shell formulations with unilateral
constraints. It has been shown that in the case of the robust
choice of the trial contact zone a solution of the contact
problem can be derived in one loading step for the extre-
mely large displacements and rotations.

An important observation is that our element stiffness
matrix requires only direct substitutions, i.e., no inversion
is needed when sides of the element coincide with the lines
of principal curvatures of the reference surface, and it is
evaluated, as in Part II, by using the analytical integration.
So, the finite element shell formulation developed is very
economical and may be used for large scale computations.
ting with rigid cylinder (modeled by 20 · 60 mesh), where � = 102,

8p
60

9p
60

10p
60

11p
60

12p
60

13p
60

14p
60

15p
60

16p
60

h h h h h

s s n n

s s n

s s n

s n

s

n n n

n s s

s s s

s s

s

.
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