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Abstract

The precise representation of arbitrarily large rigid-body motions in the displacement patterns of curved Timo-
shenko–Mindlin-type (TM) shell elements has been considered in Part I of the present work. This consideration
required the development of strain–displacement equations of the finite deformation TM shell theory, written in local
curvilinear coordinates, with regard to their consistency with the large rigid-body motions. For this purpose the dis-
placement vectors of the face surfaces are introduced and resolved in the reference surface frame. In this paper econom-
ical schemes of evaluating the stiffness matrix by means of the analytical integration inside the element and an advanced
approach for solving incremental equilibrium equations are discussed in detail. The developed approach may allow the
use of load increments that are much larger than possible with the approach proposed in Part I. The numerical results
are presented to demonstrate the high accuracy and effectiveness of the developed four-node curved shell elements and
to compare their performance with non-linear solid-shell elements extracted from the literature.
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1. Introduction

One of the main requirements of the modern first-order shell theory that is intended for the general non-
linear finite element (FE) formulation is that it must lead to strain-free modes for arbitrarily large rigid-
body motions. The adequate representation of large rigid-body motions is a necessary condition if a
non-linear element is to have the good accuracy and convergence properties. Therefore, when an inconsis-
tent non-linear shell theory is used to construct any finite element, erroneous straining modes under arbi-
trarily large rigid-body motions may be appeared. This problem has been studied for the finite deformation
Timoshenko beam, Mindlin plate and Timoshenko–Mindlin-type (TM) shell theories in Refs. [1–3]. In
these theories displacements of the bottom and top surfaces are introduced in order to exactly describe
rigid-body motions.

It is common knowledge that in some works developing the solid-shell concept [4–7] displacement vec-
tors of the face surfaces of the shell are also used and represented in some global Cartesian basis to precisely
describe large rigid-body motions. But in the TM shell theory [3] selecting as unknowns displacements of
the bottom and top surfaces has a principally another mechanical sense and allows one to formulate any
four-node curved shell element on the basis of the non-linear strain–displacement relationships, written
in local curvilinear coordinates, which are objective, i.e., invariant under all rigid-body motions. Taking
into account that displacement vectors of the face surfaces are resolved in the reference surface frame,
the developed FE formulation has computational advantages compared to the conventional isoparametric
FE formulations, since it reduces the costly numerical integration by deriving the elemental stiffness matri-
ces. It is remarkable that element matrices require only direct substitutions, i.e., no inversion is needed
when sides of the element coincide with the lines of principal curvatures of the reference surface, and they
are evaluated by using the analytical integration.

It should be mentioned that a close 6-parameter shell model was proposed by Simo et al. [8] where co-
variant derivatives, associated with the Riemannian connection on the reference surface, do not explicitly
appear in the formulation. The advantage of the 6-parameter shell formulation [8] compared to the 5-
parameter one is that the thickness stretch plays an important role in many engineering problems such
as concentrated surface loading, contact and delamination of composite shells. An essential feature of
our geometrically exact shell FE model is that, in contrast with Ref. [8], Christoffel symbols and coefficients
of the second fundamental form appear in the formulation. This clears the way to elaborate in conjunction
with the incremental total Lagrangian formulation the more robust numerical algorithms. The main reason
is that during the geometrical modeling in CAD systems the surfaces are usually generated by non-uniform
rational B-spline (NURBS) functions [9]. So, exact NURBS shell surface functions may be directly used for
describing the reference surface that would yield an efficient numerical implementation, which will be free
from mathematical complexities and suitable for large scale computations.

Herein, it is developed a refined FE formulation compared to Ref. [3] that is based on the simple and
efficient approximation of TM shells via four-node curved elements. To overcome shear and membrane
locking and have no spurious zero energy modes, the assumed strain and stress resultant fields are invoked.
This approach may be treated as an assumed stress–strain formulation and was proposed by Wempner
et al. [10] for the geometrically linear TM shell without the thickness change. In order to circumvent thick-
ness locking, modified material stiffness matrices symmetric [11–14] or non-symmetric [1–3,15,16] corre-
sponding to the generalized plane stress state may be employed. In the present paper the second (more
general) approach is used. The fundamental unknowns consist of six displacements and 11 strains of the
face surfaces of the shell, and 11 stress resultants. Therefore, for deriving governing FE equations the
Hu–Washizu variational principle should be applied.

The FE formulation developed in Part I [3] is free of assumptions of small displacements, small rotations
and small loading steps because it is based on the objective fully non-linear strain–displacement relation-
ships. There exists only one limitation associated with a simple fact that a loading step cannot be too large.
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This restriction arises in case of using the Newton–Raphson method for solving equilibrium equations for
incremental nodal degrees of freedom, i.e., in Part I the incremental assumed strains and stress resultants
are eliminated at the element level. Herein, it is discussed an alternative approach when equilibrium equa-
tions for incremental displacements and incremental assumed strains and stress resultants are solved by the
Newton–Raphson method simultaneously. As a result an additional incremental load vector due to
so-called compatibility mismatch [7,12,17–19] is present and disappears at the end of the iteration pro-
cess. So, this enhanced approach allows, as a rule, to use much larger load increments in comparison with
Part I.

The numerical results are presented to demonstrate the efficiency and high accuracy of both developed
approaches and to compare their with other non-linear state-of-the-art FE formulations. For this purpose
extensive numerical studies are employed.
2. Preliminaries

Consider a shell built up in the general case by the arbitrary superposition across the wall thickness of N
layers of uniform thickness hk. The kth layer may be defined as a 3D body of volume Vk bounded by two
surfaces Sk�1 and Sk, located at the distances dk�1 and dk measured with respect to the reference surface S,
and the edge boundary surface Xk (see Fig. 1). The full edge boundary surface X = X1 + X2 + � � � + XN is
generated by the normals to the reference surface along the bounding curve C (with the arc length s) of this
surface. It is also assumed that the bounding surfaces Sk�1 and Sk are continuous, sufficiently smooth and
without any singularities. Let the reference surface S be referred to the orthogonal curvilinear coordinate
system a1 and a2, which coincides with the lines of principal curvatures of its surface, whereas coordinate a3
is oriented along the unit vector a3 = e3 normal to the reference surface; aa = Aaea are the basis vectors of
the reference surface S; g�a ¼ A�

a ea are the basis vectors of the face surfaces S
±; ea are the tangent unit vec-

tors to the lines of principal curvatures of the reference surface; Aa and A�
a are the Lamé coefficients of the

reference and face surfaces.
The constituent layers of the shell are supposed to be rigidly joined, so that no slip on contact surfaces

and no separation of layers can occur. The material of each constituent layer is assumed to be linearly
Fig. 1. Multilayered shell element.



Fig. 2. Geometry and kinematics of shell: (a) initial configuration and (b) current configuration.
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elastic, anisotropic, homogeneous or fiber reinforced, such that in each point there is a single surface of
elastic symmetry parallel to the reference surface. Let p�i and pþi be the components of the external loading
vectors p� and p+ acting on the bottom surface S� = S0 and top surface S+ = SN in the ai coordinate direc-
tions; qðkÞ ¼ qðkÞm mþ qðkÞt tþ qðkÞ3 e3 be the external loading vector acting on the edge boundary surface Xk,
where qðkÞm , qðkÞt and qðkÞ3 are the components of its vector in the m, t and a3 directions; m and t are the normal
and tangential unit vectors to the bounding curve C (see Fig. 1). Here and in the following developments the
index k identifies the belonging of any quantity to the kth layer and runs from 1 to N; the abbreviation ( ),a
implies the partial derivatives with respect to the coordinate a1 and a2; indices i, j, ‘, m take the values 1, 2
and 3 while Greek indices a, b, c, d take the values 1 and 2.

The finite deformation TM shell theory is based on the linear approximation of displacements in the
thickness direction
tR ¼ N�ða3ÞtR� þ Nþða3ÞtRþ; tR� ¼ R� þ v�; R� ¼ rþ d�e3; ð1aÞ
v� ¼

X
i

v�i ei; ð1bÞ

N�ða3Þ ¼
1

h
ðdþ � a3Þ; Nþða3Þ ¼

1

h
ða3 � d�Þ; ð1cÞ
where r(a1,a2) is the position vector of the reference surface; R± are the position vectors of the face surfaces
in the initial shell configuration; v± are the displacement vectors of the face surfaces; v�i ða1; a2Þ are the com-
ponents of these vectors, which are always measured in accordance with the total Lagrangian formulation
from the initial configuration to the current configuration directly (see Fig. 2); N±(a3) are the linear
through-the-thickness shape functions; h is the thickness of the shell. It is important that displacement vec-
tors (1b) are represented in the orthonormal reference surface basis ei that allows one to reduce the costly
numerical integration by deriving the elemental stiffness matrix.
3. Strain–displacement relationships

The strain–displacement relationships of the finite deformation TM shell theory [3] can be rewritten in a
more convenient form for the FE implementation as
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eDSab ¼ N�ða3ÞE�
ab þ Nþða3ÞEþ

ab; ð2aÞ

eDSa3 ¼ N�ða3ÞE�
a3 þ Nþða3ÞEþ

a3; ð2bÞ

eDS33 ¼ E33. ð2cÞ
Here, E�
ab and E�

a3 are the tangential and transverse shear components of the Green–Lagrange strain
tensor of face surfaces S± defined by
2E�
ab ¼

1

AaAb
ðtg�a � tg�b � g�a � g�b Þ ¼

f�b
Aa

v�;a � eb þ
f�a
Ab

v�;b � ea þ
1

AaAb
v�;a � v�;b; ð3aÞ

2E�
a3 ¼

1

Aa
ðtg�a � ta3 � g�a � a3Þ ¼ f�a b � ea þ

1

Aa
v�;a � ðe3 þ bÞ; ð3bÞ

2E33 ¼ ta3 � ta3 � a3 � a3 ¼ 2b � e3 þ
1

2
b

� �
; ð3cÞ

tg�a ¼ tR�
;a ¼ g�a þ v�;a; g�a ¼ R�

;a ¼ A�
a ea;

ta3 ¼ a3 þ b; ð3dÞ

b ¼ 1

h
ðvþ � v�Þ; A�

a ¼ Aaf
�
a ; f�a ¼ 1þ kad

�;
where ka are the principal curvatures of the reference surface. Strain–displacement relationships (2) and (3)
are very attractive because they are objective, i.e., invariant under arbitrarily large rigid-body motions. A
proof of this statement may be obtained by using a technique [3]. The advantage of relations (3a) and (3b)
compared to those reported in Part I is that parameters f�a characterizing curvatures of the face surfaces do
not appear in non-linear terms.

Further we prove a fundamental result concerning a link between transverse components of the Green–
Lagrange strain tensor (2) that was not presented in Part I.

Proposition. The transverse components of the Green–Lagrange strain tensor of the TM shell theory satisfy

the following linking conditions:
2ðEþ
a3 � E�

a3Þ ¼
1

Aa
hE33;a. ð4Þ
Proof. Using Eqs. (3b) and (3d) yields
2ðEþ
a3 � E�

a3Þ ¼
1

Aa
h½Aakab � ea þ b;a � ðe3 þ bÞ�. ð5Þ
Taking into account well-known formulas for derivatives of the basis vectors with respect to the ortho-
gonal curvilinear coordinates a1 and a2 [20], one obtains from Eq. (3c)
E33;a ¼ b � e3;a þ b;a � ðe3 þ bÞ ¼ Aakab � ea þ b;a � ðe3 þ bÞ. ð6Þ
Required relation (4) immediately follows from Eqs. (5) and (6). h

Finally, we represent strain–displacement relationships (3) in a scalar form as
E�
ab ¼ e�ab þ g�ab; E�

a3 ¼ e�a3 þ g�a3; E33 ¼ e33 þ g33. ð7Þ
Here, e�ab, e
�
a3, e33 and g�ab, g

�
a3, g33 are the linear and non-linear components of the Green–Lagrange strain

tensor defined by
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e�aa ¼ f�a k
�
a ; 2e�12 ¼ f�2 x

�
1 þ f�1 x

�
2 ; 2e�a3 ¼ f�a ba � h�a ; e33 ¼ b3; ð8aÞ

g�aa ¼ 1
2
½ðk�a Þ

2 þ ðx�
a Þ

2 þ ðh�a Þ
2�; 2g�12 ¼ k�1 x

�
2 þ k�2 x

�
1 þ h�1 h

�
2 ; ð8bÞ

2g�a3 ¼ bak
�
a þ bcx

�
a � b3h

�
a for c 6¼ a; g33 ¼ 1

2
ðb2

1 þ b2
2 þ b2

3Þ;
where
k�a ¼ 1

Aa
v�a

� �
;a

þ Baav�a þ Babv�b þ kav�3 for b 6¼ a;

x�
a ¼ 1

Aa
v�b

� �
;a

þ Baav�b � Babv�a for b 6¼ a;

h�a ¼ � 1

Aa
v�3

� �
;a

� Baav�3 þ kav�a ; bi ¼
1

h
ðvþi � v�i Þ; Bad ¼

1

AaAd
Aa;d.

ð9Þ
It should be noted that derivatives from Eq. (9) have been written in a form that is best suited for apply-
ing the analytical integration.
4. FE formulation

In this section the basic theoretical and computational aspects of the assumed stress–strain TM shell for-
mulation including the analytical integration yielding the element stiffness matrix and two approaches for
solving incremental equilibrium equations are addressed in detail.

4.1. Mixed variational equation

The Hu–Washizu 3D variational principle for the thin multilayered anisotropic shell can be written in
the following form:
X

k

Z Z Z
V k

X
i;j

SðkÞ
ij �

X
‘;m

CðkÞ
ij‘me

AS
‘m

 !
deASij þ ðeASij � eDSij ÞdS

ðkÞ
ij � SðkÞ

ij de
DS
ij

" #
da3 dS

þ
Z Z

Sþ

X
i

pþi dui dS �
Z Z

S�

X
i

p�i dui dS

þ
X
k

Z Z
Xk

ðqðkÞm dum þ qðkÞt dut þ qðkÞ3 du3ÞdX ¼ 0; ð10aÞ

dS ¼ A1A2 da1 da2; dX ¼ �cda3 ds; ð10bÞ
Aa ¼ Aað1þ ka�dÞ; �c ¼ 1þ kN�d; �d ¼ 1

2
ðd� þ dþÞ;
where SðkÞ
ij are the components of the second Piola–Kirchhoff stress tensor of the kth layer; CðkÞ

ij‘m are the
components of the elasticity tensor of the kth layer; eDSij are the strains due to the displacement field; eASij
are the independently assumed strains; um, ut and u3 are the components of the displacement vector in
the coordinate system m, t and a3 (see Fig. 1); kN is the normal curvature of the bounding curve C. Here,
in accordance with formulas (10b) it is supposed that the metrics of all surfaces parallel to the reference
surface are identical and equal to the metric of the middle surface.

The finite deformation TM shell theory is based on the linear approximations of displacements (1) and
displacement-dependent strains (2) in the thickness direction. Additionally, we should adopt the similar
approximation for the assumed displacement-independent strains
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eASab ¼ N�ða3ÞE�
ab þ Nþða3ÞEþ

ab; ð11aÞ
eASa3 ¼ N�ða3ÞE�

a3 þ Nþða3ÞEþ
a3; ð11bÞ

eAS33 ¼ E33. ð11cÞ
Substituting approximations (1), (2) and (11) into variational equation (10a) and introducing stress
resultants and external load resultants
H�
ai ¼

X
k

Z dk

dk�1

SðkÞ
ai N

�ða3Þda3; H 33 ¼
X
k

Z dk

dk�1

SðkÞ
33 da3;

bH �
m� ¼

X
k

Z dk

dk�1

qðkÞ� N�ða3Þda3 ð� ¼ m; t; 3Þ; ð12Þ
one can obtain the mixed variational equation for the TM shell element
Z 1

�1

Z 1

�1

½dETðH�DEÞ þ dHTðE� EÞ � dETHþ dvTP�Ae‘
1 A

e‘
2 dn1 dn2 þ

I
Ce‘
dvTC bHC�cds ¼ 0. ð13Þ
Here, matrix notations are used
v ¼ ½ v�1 vþ1 v�2 vþ2 v�3 vþ3 �T; vC ¼ ½ v�m vþm v�t vþt v�3 vþ3 �T;

E ¼ E�
11 Eþ

11 E�
22 Eþ

22 2E�
12 2Eþ

12 2E�
13 2Eþ

13 2E�
23 2Eþ

23 E33

� �T
;

E ¼ E�
11 Eþ

11 E�
22 Eþ

22 2E�
12 2Eþ

12 2E�
13 2Eþ

13 2E�
23 2Eþ

23 E33

� �T
;

H ¼ ½H�
11 Hþ

11 H�
22 Hþ

22 H�
12 Hþ

12 H�
13 Hþ

13 H�
23 Hþ

23 H 33 �T;bHC ¼ ½ bH �
mm

bH þ
mm

bH �
mt

bH þ
mt

bH �
m3

bH þ
m3
�T; P ¼ ½�p�1 pþ1 �p�2 pþ2 �p�3 pþ3 �T;

D ¼

D00
1111 D01

1111 D00
1122 D01

1122 D00
1112 D01

1112 0 0 0 0 D�
1133

D01
1111 D11

1111 D01
1122 D11

1122 D01
1112 D11

1112 0 0 0 0 Dþ
1133

D00
2211 D01

2211 D00
2222 D01

2222 D00
2212 D01

2212 0 0 0 0 D�
2233

D01
2211 D11

2211 D01
2222 D11

2222 D01
2212 D11

2212 0 0 0 0 Dþ
2233

D00
1211 D01

1211 D00
1222 D01

1222 D00
1212 D01

1212 0 0 0 0 D�
1233

D01
1211 D11

1211 D01
1222 D11

1222 D01
1212 D11

1212 0 0 0 0 Dþ
1233

0 0 0 0 0 0 D00
1313 D01

1313 D00
1323 D01

1323 0

0 0 0 0 0 0 D01
1313 D11

1313 D01
1323 D11

1323 0

0 0 0 0 0 0 D00
2313 D01

2313 D00
2323 D01

2323 0

0 0 0 0 0 0 D01
2313 D11

2313 D01
2323 D11

2323 0

D�
3311 Dþ

3311 D�
3322 Dþ

3322 D�
3312 Dþ

3312 0 0 0 0 D3333

2666666666666666666666664

3777777777777777777777775

;

Dpq
ij‘m ¼

X
k

Z dk

dk�1

CðkÞ
ij‘m½N�ða3Þ�2�p�q½Nþða3Þ�pþq da3 for p; q ¼ 0; 1;

D�
33‘m ¼ D00

33‘m þ D01
33‘m; Dþ

33‘m ¼ D01
33‘m þ D11

33‘m; D3333 ¼ D�
3333 þ Dþ

3333;

ð14Þ
where nc ¼ ðac � de‘
c Þ=‘

e‘
c are the local curvilinear normalized coordinates (see Fig. 3); de‘

c ¼ ða�e‘
c þ aþe‘

c Þ=2
are the coordinates of the center of the element; 2‘e‘c ¼ aþe‘

c � a�e‘
c are the lengths of the element; A

e‘
a ¼ Aa‘

e‘
a

are the Lamé coefficients of the middle surface of the element; v�m , v
�
t and v�3 are the components of the



Fig. 3. Four-node curved shell element. P 1ðaþe‘
1 ; aþe‘

2 Þ; P 2ða�e‘
1 ; aþe‘

2 Þ; P 3ða�e‘
1 ; a�e‘

2 Þ; P 4ðaþe‘
1 ; a�e‘

2 Þ are the nodal points of the element.
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displacement vectors of the face surfaces in the coordinate system m, t and a3; D
pq
ij‘m are the components of

the through-the-thickness elasticity tensors; Ce‘ is the bounding curve belonging to the reference surface of
the element Se‘.

Variational equation (13) provides a foundation for the FE formulation on the basis of two approaches
for circumventing thickness locking with the non-symmetric constitutive stiffness matrix D [3,16] when
D�

ab33 ¼ 0 or symmetric one [11–14] when additionally D�
33ab ¼ 0. Below only the first approach will be

employed.

4.2. Four-node curved TM shell element

For the simplest quadrilateral four-node shell element the displacement field is approximated according
to the standard C0 interpolation
v ¼
X
r

Nrðn1; n2Þvr or ð15aÞ

v ¼
X
r1;r2

nr11 n
r2
2 v

r1r2 ; ð15bÞ
where vr ¼ ½ v�1r vþ1r v�2r vþ2r v�3r vþ3r �
T are the displacement vectors of the element nodes; Nr(n1,n2) are

the linear shape functions of the element; the subscript r denotes a number of nodes and runs from 1 to 4;
superscripts r1, r2 take the values 0 and 1. The load vector is also assumed to vary linearly inside the
element.

In a result for the displacement-dependent strains (7) and (8) we have the following approximation:
E ¼
X
s1;s2

ns11 n
s2
2 E

s1s2 ; ð16aÞ

Es1s2 ¼ ðBs1s2 þ As1s2VÞV; Bs1s2 ¼ 0 for s1 ¼ 2 or s2 ¼ 2; ð16bÞ
Es1s2 ¼ ½E�s1s2

11 Eþs1s2
11 E�s1s2

22 Eþs1s2
22 2E�s1s2

12 2Eþs1s2
12 2E�s1s2

13 2Eþs1s2
13 2E�s1s2

23 2Eþs1s2
23 Es1s2

33 �T;
where V ¼ ½ vT1 vT2 vT3 vT4 �
T is the displacement vector at nodal points of the element; Bs1s2 are the matri-

ces of order 11 · 24 corresponding to the linear strain–displacement transformation; As1s2 are the 3D arrays
of order 11 · 24 · 24 corresponding to the non-linear strain–displacement transformation. Throughout this
section superscripts s1, s2 take the values 0, 1 and 2.
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Remark 1. The higher-order coefficients in approximation (16a) and (16b) for the transverse shear strains
satisfy the following coupling conditions:
E�2s2
13 ¼ Eþ2s2

13 and E�s12
23 ¼ Eþs12

23 ; ð16cÞ

which follow from strain–displacement relationships (7)–(9) and have a common nature with kinematic
conditions (4).

To avoid shear and membrane locking and have no spurious zero energy modes, the assumed strain and
stress resultant fields inside the element are introduced
E ¼
X
r1;r2

nr11 n
r2
2 Q

r1r2Er1r2 ; H ¼
X
r1;r2

nr11 n
r2
2 Q

r1r2Hr1r2 ;

E00 ¼ ½E�00
11 Eþ00

11 E�00
22 Eþ00

22 2E�00
12 2Eþ00

12 2E�00
13 2Eþ00

13 2E�00
23 2Eþ00

23 E00
33 �

T
;

E01 ¼ ½E�01
11 Eþ01

11 2E�01
13 2Eþ01

13 E01
33 �

T
;

E10 ¼ ½E�10
22 Eþ10

22 2E�10
23 2Eþ10

23 E10
33 �

T
;

E11 ¼ ½E11
33�;

H00 ¼ ½H�00
11 Hþ00

11 H�00
22 Hþ00

22 H�00
12 Hþ00

12 H�00
13 Hþ00

13 H�00
23 Hþ00

23 H 00
33 �

T
;

H01 ¼ ½H�01
11 Hþ01

11 H�01
13 Hþ01

13 H 01
33 �

T
;

H10 ¼ ½H�10
22 Hþ10

22 H�10
23 Hþ10

23 H 10
33 �

T
;

H11 ¼ ½H 11
33�;

ð17Þ
where Qr1r2 are the matrices from zeros and units defined in Part I [3]. Note that this approach may be trea-
ted as an assumed stress–strain formulation and was proposed by Wempner et al. [10] for the geometrically
linear TM shells without the thickness change. Further developments for the geometrically non-linear Timo-
shenko beam, Mindlin plate and TM shell theories can be found in Refs. [1–3].

It is important that the described formulation makes our non-linear four-node curved TM shell element
a bit stiff. The best solution of the problem is to use the assumed displacement-dependent strain field [1].
The main idea of the such formulation may be traced back to the ANS method proposed by Hughes
and Tezduyar [21] for the linear displacement FE formulation and further developed by many scientists
for the non-linear displacement and mixed FE formulations [4–7,22–24]. This enhanced non-linear FE
formulation has been already used in Part I [3], but has not been described for conciseness.

To circumvent non-linear locking, displacement-dependent strains are assumed to vary linearly inside the
element (see Fig. 3)
EADS ¼
X
r

Nrðn1; n2ÞEðPrÞ ð18Þ
that may be written by using Eq. (16a) in the more convenient form
EADS ¼ E00 þ E02 þ E20 þ E22 þ n1ðE10 þ E12Þ þ n2ðE01 þ E21Þ þ n1n2E
11. ð19Þ
Substituting Eqs. (15b), (17) and (19) into mixed variational equation (13) and using the standard
variational procedure, one obtains governing equations of the developed FE formulation
Er1r2 ¼ ðQr1r2ÞTðBr1r2 þ Rr1r2VÞV; ð20aÞ
Hr1r2 ¼ ðQr1r2ÞTDQr1r2Er1r2 ; ð20bÞX
r1;r2

1

3r1þr2
ðBr1r2 þ 2Rr1r2VÞTQr1r2Hr1r2 ¼ F; ð20cÞ
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where F is the force vector; Rr1r2 are the 3D arrays of order 11 · 24 · 24 defined as
R00 ¼ A00 þ A02 þ A20 þ A22; R01 ¼ A01 þ A21; R10 ¼ A10 þ A12; R11 ¼ A11. ð21Þ
Remark 2. There exists a link between displacement-independent and displacement-dependent strains
E00 ¼ E00 þ E02 þ E20 þ E22; ð22Þ
E01 ¼ ðQ01ÞTðE01 þ E21Þ; E10 ¼ ðQ10ÞTðE10 þ E12Þ; E11 ¼ ðQ11ÞTE11
that immediately follows from Eq. (20a) allowing for Eqs. (16b) and (21).
4.3. Analytical integration leading to element stiffness matrix

In order to fulfill an analytical integration after substitution of the linear interpolations (15b), (17) and
(19) into variational equation (13), we should invoke non-traditional schemes for evaluating strains of the
face surfaces from Eqs. (7), (8) and (16b)
E�s1s2
ai ¼ e�s1s2

ai þ g�s1s2
ai ; Es1s2

33 ¼ es1s233 þ gs1s233 ; ð23aÞ
e�r1r2
aa ¼ ff�a g

00k�r1r2
a ; 2e�r1r2

12 ¼ ff�2 g
00x�r1r2

1 þ ff�1 g
00x�r1r2

2 ; ð23bÞ
2e�r1r2

a3 ¼ ff�a g
00br1r2

a � h�r1r2
a ; er1r233 ¼ br1r2

3 ;

e�s1s2
ai ¼ 0 and es1s233 ¼ 0 for s1 ¼ 2 or s2 ¼ 2;

g�s1s2
aa ¼ 1

2

X
r1þr3¼s1
r2þr4¼s2

ðk�r1r2
a k�r3r4

a þ x�r1r2
a x�r3r4

a þ h�r1r2
a h�r3r4

a Þ; ð23cÞ

2g�s1s2
12 ¼

X
r1þr3¼s1
r2þr4¼s2

ðk�r1r2
1 x�r3r4

2 þ k�r1r2
2 x�r3r4

1 þ h�r1r2
1 h�r3r4

2 Þ;

2g�s1s2
a3 ¼

X
r1þr3¼s1
r2þr4¼s2

ðbr1r2
a k�r3r4

a þ br1r2
c x�r3r4

a � br1r2
3 h�r3r4

a Þ ðc 6¼ aÞ;

gs1s233 ¼ 1

2

X
r1þr3¼s1
r2þr4¼s2

ðbr1r2
1 br3r4

1 þ br1r2
2 br3r4

2 þ br1r2
3 br3r4

3 Þ;
where
k�r1r2
a ¼ 1

Ae‘
a

v�a

( )r1r2

a

þ fBe‘
aav

�
a þ Be‘

abv
�
b þ kav�3 g

r1r2 ðb 6¼ aÞ;

x�r1r2
a ¼ 1

Ae‘
a

v�b

( )r1r2

a

þ fBe‘
aav

�
b � Be‘

abv
�
a g

r1r2 ðb 6¼ aÞ;

h�r1r2
a ¼ � 1

Ae‘
a

v�3

( )r1r2

a

þ f�Be‘
aav

�
3 þ kav�a g

r1r2 ; br1r2
i ¼ 1

h
ðvþr1r2

i � v�r1r2
i Þ.

ð24Þ
In formulas (23) and (24) superscripts r1, r2, r3 and r4 take the values 0 and 1, while s1 and s2 run from 0
to 2, and in accordance with Fig. 3 convenient mesh notations are used
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ff g00 ¼ 1
4
½f ðP 1Þ þ f ðP 2Þ þ f ðP 3Þ þ f ðP 4Þ�; ff g01 ¼ 1

4
½f ðP 1Þ þ f ðP 2Þ � f ðP 3Þ � f ðP 4Þ�;

ff g10 ¼ 1
4
½f ðP 1Þ � f ðP 2Þ � f ðP 3Þ þ f ðP 4Þ�; ff g11 ¼ 1

4
½f ðP 1Þ � f ðP 2Þ þ f ðP 3Þ � f ðP 4Þ�;

ff g001 ¼ ff g10; ff g011 ¼ ff g11; ff g101 ¼ ff g111 ¼ 0;

ff g002 ¼ ff g01; ff g102 ¼ ff g11; ff g012 ¼ ff g112 ¼ 0.

ð25Þ
Assuming further that a product A
e‘
1 A

e‘
2 from the variational equation (13) does not vary inside the

element and accounting for notations (25), the simplest approximation can be employed
A
e‘
1 A

e‘
2 ¼ fAe‘

1 A
e‘
2 g

00. ð26Þ

It is remarkable that our elemental stiffness matrix requires only direct substitutions (no inversion is

needed as we shall see in the next section) and it is evaluated by using the analytical integration. So, our
FE formulation is very economical and efficient compared to the conventional isoparametric FE formula-
tions because it reduces the costly numerical integration by deriving the elemental stiffness matrices.

4.4. Two approaches for solving incremental equilibrium equations

Up to this moment, no incremental arguments are needed in the total Lagrangian formulation. The
incremental displacements, strains and stress resultants are needed for solving non-linear equations (20)
on the basis of the Newton–Raphson method. Further, the left superscripts t and t + Dt indicate in which
configuration at time t or time t + Dt a quantity occurs. Then, in accordance with this agreement we have
tþDtV ¼ tVþ DV; tþDtF ¼ tFþ DF; tþDtEr1r2 ¼ tEr1r2 þ DEr1r2 ; tþDtHr1r2 ¼ tHr1r2 þ DHr1r2 ; ð27Þ

where DV;DF;DEr1r2 and DHr1r2 are the incremental variables.

Substituting formulas (27) in Eq. (20) and taking into account that the external loads and second Piola-
Kirchhoff stresses constitute the self-equilibrated system in a configuration at time t, one can obtain the
following incremental equations:
DEr1r2 ¼ ðQr1r2ÞTðtMr1r2 þ Rr1r2DVÞDV; ð28aÞ
DHr1r2 ¼ D

r1r2DEr1r2 ; ð28bÞX
r1;r2

1

3r1þr2
½2ðRr1r2DVÞTQr1r2 tHr1r2 þ ðtMr1r2 þ 2Rr1r2DVÞTQr1r2DHr1r2 � ¼ DF. ð28cÞ
Here and in the following developments convenient matrix notations are used
D
r1r2 ¼ ðQr1r2ÞTDQr1r2 ; Dr1r2 ¼ Qr1r2D

r1r2ðQr1r2ÞT; ð29aÞ
tMr1r2 ¼ Br1r2 þ 2Rr1r2 tV. ð29bÞ
There are two approaches for solving incremental equations (28). The first approach developed in Part I
[3] practically leads to the displacement FE formulation while the second approach yields the classical
hybrid FE formulation [17–19].

4.4.1. Approach D

Let us eliminate incremental strains and stress resultants from Eq. (28). In a result, the following equi-
librium equations are obtained
X

r1;r2

1

3r1þr2
½2ðRr1r2DVÞTQr1r2 tHr1r2 þ ðtMr1r2 þ 2Rr1r2DVÞTDr1r2ðtMr1r2 þ Rr1r2DVÞDV� ¼ DF; ð30Þ
where Dr1r2 are the matrices of order 11 · 11 defined by Eq. (29a).



2220 G.M. Kulikov, S.V. Plotnikova / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2209–2230
Due to existence of non-linear terms in Eq. (30), the Newton–Raphson iteration process should be
employed
DV½nþ1� ¼ DV½n� þ DV½n� ðn ¼ 0; 1; . . .Þ ð31Þ
to solve these equations
X
r1;r2

1

3r1þr2
ðtLr1r2½n�ÞTDr1r2 tLr1r2½n�DV½n� þ 2ðRr1r2DV½n�ÞTðQr1r2 tHr1r2
h

þDr1r2ðtMr1r2 þ Rr1r2DV½n�ÞDV½n�Þ
i
¼ DF½n�; ð32Þ
where
DF½n� ¼ DF�
X
r1;r2

1

3r1þr2
½2ðRr1r2DV½n�ÞTQr1r2 tHr1r2 þ ðtLr1r2½n�ÞTDr1r2ðtMr1r2 þ Rr1r2DV½n�ÞDV½n��;

tLr1r2½n� ¼ Br1r2 þ 2Rr1r2ðtVþ DV½n�Þ. ð33Þ
The equilibrium equations (32) and (33) for each element are assembled by the usual technique to form
the global incremental equilibrium equations. These incremental equations should be performed until the
required accuracy of the solution can be obtained. The convergence criterion used herein can be described
as
kDU½nþ1� � DU½n�k < ekDU½n�k; ð34Þ
where k � k stands for the Euclidean norm in the displacement space; DU is the global vector of displacement
increments; e is the prescribed tolerance.

4.4.2. Approach H
Here, it is discussed an alternative approach when equilibrium equations (28) for incremental displace-

ments and incremental assumed strains and stress resultants are solved by the Newton–Raphson method
simultaneously, i.e., a new iteration scheme should be applied
DV½nþ1� ¼ DV½n� þ DV½n�; DEr1r2½nþ1� ¼ DEr1r2½n� þ DEr1r2½n�;

DHr1r2½nþ1� ¼ DHr1r2½n� þ DHr1r2½n� ðn ¼ 0; 1; . . .Þ ð35Þ
instead of scheme (31). As a result, we have
DEr1r2½n� � ðQr1r2ÞT tLr1r2½n�DV½n� ¼ ðQr1r2ÞTðtMr1r2 þ Rr1r2DV½n�ÞDV½n� � DEr1r2½n�; ð36aÞ
DHr1r2½n� �D

r1r2DEr1r2½n� ¼ D
r1r2DEr1r2½n� � DHr1r2½n�; ð36bÞX

r1;r2

1

3r1þr2
½2ðRr1r2DV½n�ÞTQr1r2ðtHr1r2 þ DHr1r2½n�Þ þ ðtLr1r2½n�ÞTQr1r2DHr1r2½n�

¼ DF�
X
r1;r2

1

3r1þr2
½2ðRr1r2DV½n�ÞTQr1r2 tHr1r2 þ ðtLr1r2½n�ÞTQr1r2DHr1r2½n��. ð36cÞ
Eliminating further incremental strains DEr1r2½n� and stress resultants DHr1r2½n� from Eq. (36), one derives
the following governing equations:
X

r1;r2

1

3r1þr2
½ðtLr1r2½n�ÞTDr1r2 tLr1r2½n�DV½n� þ 2ðRr1r2DV½n�ÞTQr1r2ðtHr1r2 þ DHr1r2½n�Þ� ¼ DF½n�. ð37Þ
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It is observed that governing Eqs. (32) and (37) have equal right parts (33) and only underlined terms are
different. These equations would be identical if an equality
Table
Listing

Name

TMS4
TMS4
HS (T
HS (U
AS
Qr1r2DHr1r2½n� ¼ Dr1r2ðtMr1r2 þ Rr1r2DV½n�ÞDV½n� ð38Þ

would be fulfilled. This implies that compatibility conditions (28a) and (28b) are satisfied at every iteration
step and, therefore, Approach H actually leads to Approach D. One can see that in Approach H the terms
due to so-called compatibility mismatch [7,12,19] are present at every iteration step and disappear at the
end of the iteration process.

Finally, we give a formula that is used in the numerical algorithm for the computation of incremental
stress resultants at the nth iteration step
Qr1r2DHr1r2½n� ¼ Dr1r2 ½ðtMr1r2 þ 2Rr1r2DV½n�1�ÞDV½n� � ðRr1r2DV½n�1�ÞDV½n�1�� ð39Þ

instead of Eq. (38). This formula holds for n P 1 while at the beginning of the first iteration one should set
DV½0� ¼ 0; DHr1r2½0� ¼ 0.
5. Numerical examples

The performance of the proposed TM shell elements is evaluated with several discriminating problems
extracted from the literature. A listing of these elements and the abbreviations used to identify them are
contained in Table 1.

In all numerical benchmark problems the tolerance error from criterion (34) is set to be e = 10�4. All our
results are compared with those based on using identical node spacing and as a rule the same convergence
tolerance. Besides, NStep denotes a number of load steps employed to equally divide the maximum load,
whereas NIter stands for a number of iterations.

The computations were performed on a standard PC Pentium/1000 using Delphi environment. Note also
that predictions of all elements developed (if they converge) are usually insensitive to a number of loading
steps.

5.1. Examples demonstrating advantages of Approach H

The numerous benchmark problems exhibited that Approach H allows as a rule to use much larger load
increments in comparison with Approach D and, therefore, H-elements are more efficient for engineering
computations than D-elements. Some of these discriminating problems are a cantilever beam under the tip
load, a pinched hemispherical shell, a slit ring plate, a cylindrical shell with free edges and a pinched cross-
ply hyperbolic shell.
1
of elements

Description

RD Four-node curved TM shell element based on the Approach D [3]
RH Four-node curved TM shell element based on the Approach H
L) Bilinear hybrid stress solid-shell element based on the total Lagrangian formulation [7]
L) Bilinear hybrid stress solid-shell element based on the updated Lagrangian formulation [7]

Biquadratic assumed strain solid-shell element based on the total Lagrangian formulation [12]
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5.1.1. Cantilever beam under transverse tip load

This problem has been extensively treated for numerical testing of non-linear FE models [7,12]. The can-
tilever beam has a rectangular cross-section, and its mechanical and geometrical characteristics are given in
Fig. 4.

Table 2 lists a comparison with the results reported in Refs. [7,12] by using 8 · 1 and 4 · 1 regular meshes
of bilinear and biquadratic solid-shell elements, respectively, with the numerical Gauss integration scheme.
While we used the 8 · 1 mesh of TMS4R elements with an exact analytical integration. It is seen that both
TMS4R elements yield an identical prediction of the beam response but the TMS4RH element solution
converges more readily than the TMS4RD one. Fig. 5 additionally illustrates the dependence of tip dis-
placements of the centerline on the loading factor f.
Fig. 4. Cantilever beam under transverse tip load.

Table 2
Tip displacements of cantilever beam under transverse load

Element NStep = 1 NStep = 4 NStep = 10

��v1 ��v3 NIter ��v1 ��v3 NIter ��v1 ��v3 NIter

TMS4RD 3.404 6.808 8 3.404 6.808 22 3.404 6.808 40
TMS4RH 3.404 6.808 5 3.404 6.808 12 3.404 6.808 29
HS (TL) [7] 3.344 6.777 5 3.344 6.777 14 3.344 6.777 30
HS (UL) [7] 3.357 6.785 7 3.357 6.785 17 3.357 6.785 36
AS [12] 6.766 6 6.761 16 6.761 34
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Fig. 5. Tip displacements of cantilever beam under transverse load.
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5.1.2. Pinched hemispherical shell

To investigate the capability of the developed elements to overcome membrane and shear locking phe-
nomena, we consider one of the most demanding non-linear tests. A hemispherical shell with 18� hole at the
top is loaded by two pairs of opposite concentrated forces on the equator. The geometrical and material
data of the problem are shown in Fig. 6.

Due to symmetry of the problem, only one quarter of the shell is modeled with 16 · 16 mesh of the
TMS4R elements. Table 3 and Fig. 7 present a comparison with solutions [7,12] derived by using
16 · 16 and 8 · 8 uniform meshes of bilinear and biquadratic solid-shell elements, correspondingly. As
can be seen, both TMS4R elements perform well but the TMS4RH element exhibits much better conver-
gence characteristics. So, only seven iterations are needed to obtain a solution of this discriminating
Fig. 6. Pinched hemispherical shell. Shell of revolution with geometrical parameters: A1 = R, A2 = Rcosa1, k1 = k2 = 1/R, a1 2 [0,2p/
5], a2 2 [0,p/2].
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Fig. 7. Transverse displacements of pinched hemispherical shell.

Table 3
Transverse displacements under applied loads of pinched hemispherical shell

Element NStep = 1 NStep = 5 NStep = 10

�vB3 ��vA3 NIter �vB3 ��vA3 NIter �vB3 ��vA3 NIter

TMS4RD Fail to converge 4.0556 8.1448 64 4.0556 8.1448 73
TMS4RH 4.0556 8.1448 7 4.0556 8.1448 17 4.0556 8.1448 29
HS (TL) [7] 4.0488 8.1173 8 4.0488 8.1173 21 4.0488 8.1173 36
HS (UL) [7] 4.0700 8.1783 10 4.0700 8.1784 26 4.0700 8.1784 44
AS [12] 4.0205 8.0160 8 4.0209 8.0169 23 4.0209 8.0169 35
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problem. Note also that here, in contrast to Part I [3], the more robust strain–displacement relationships (7)
and (8) were employed and, in a result, slightly more displacements were found.

5.1.3. Slit ring plate under line load

This example was first presented by Basar and Ding [25] to test finite deformation formulations for shell
structures and further has been used by many investigators. The ring plate is subjected to a line load P

applied at its free edge of the slit while the other edge is fully clamped. The plate is modeled by a shell
of revolution with geometrical parameters shown in Fig. 8.

The displacements at points A and B of the plate, presented in Table 4 and Fig. 9, have been obtained
using the 6 · 30 mesh of TMS4R elements and are compared with those reported in Refs. [7,26] by applying
Fig. 8. Slit ring plate under line load. E = 2.1 · 107, m = 0, r = 6, R = 10, h = 0.03, P = 0.8. Shell of revolution with geometrical
parameters: A1 = 1, A2 = r + a1, k1 = 0, k2 = 0, a1 2 [0,R � r], a2 2 [0,2p].

Table 4
Displacements at points A and B of slit ring plate

Element NStep = 1 NStep = 5 NStep = 10

�vA3 �vB3 NIter �vA3 �vB3 NIter �vA3 �vB3 NIter

TMS4RD Fail to converge Fail to converge Fail to converge
TMS4RH 13.531 17.163 10 13.527 17.157 19 13.531 17.163 32
HS (TL) [7] 13.618 17.257 11 13.618 17.257 25 13.618 17.257 42
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Fig. 9. Displacements of slit ring plate under line load.
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the same mesh of the bilinear hybrid stress solid-shell elements. It should be noted that we derived the
converged solutions for the TMS4RD element only in case of using NStep > 10.

5.1.4. Cylindrical shell with free edges

A cylindrical shell pulled by a pair of opposite concentrated forces is a very popular non-linear bench-
mark problem [7,12,26,27]. The geometrical and material data of the shell are given in Fig. 10.

Owing to symmetry of the problem, only one octant of the cylinder is discretized by the 8 · 16 mesh that
was constructed by refining the 6 · 14 uniform mesh as shown in Fig. 10. Table 5 and Fig. 11 display a
comparison of our results with results obtained by using identical or uniform 8 · 16 meshes of bilinear
and 4 · 8 meshes of biquadratic solid-shell elements with the same node spacing. It is interesting that many
Fig. 10. Cylindrical shell with free edges.

Table 5
Transverse displacement under applied load of cylindrical shell with free edges

Element NStep = 1 NStep = 5 NStep = 10

�v3 NIter �v3 NIter �v3 NIter

TMS4RD 2.4337 23 2.4337 45 2.4337 61
TMS4RH 2.4337 8 2.4337 20 2.4337 33
HS (TL) [7]a 2.4643 8 2.4643 22 2.4643 36
AS [12]a 2.4537 9 2.4644 23 2.4648 37

a Results were obtained for loading factor f = 2.
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Fig. 11. Transverse displacements of cylindrical shell with free edges.
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researchers detected a slight snap-through behaviour of the shell. So, Sze et al. [7] found that snap-through
occurs when the loading factor f is between 1.9 and 2.0. Since we did not interest a post-buckling behaviour
of the shell and taking into consideration the aforementioned result, we stopped our calculations at
f = 1.95.

5.1.5. Pinched cross-ply hyperbolic shell

Further we consider a cross-ply hyperbolic shell under two pairs of opposite concentrated forces. The
geometrical and material data of the three-layer hyperbolic shell are shown in Fig. 12, where 0� and 90�
refer to the circumferential and meridional directions.

Due to symmetry of the problem, only one octant of the shell is modeled with the uniform 28 · 28 mesh
of TMS4R elements. Table 6 and Fig. 13 display our results compared with those derived by Basar et al.
[28] and Braun et al. [27] using the 28 · 28 mesh of bilinear and 14 · 14 mesh of biquadratic degenerated-
shell and solid-shell elements, respectively, where �vx and �vy denote displacements of the middle surface in x
and y directions. One may observe that the TMS4RH element performs excellently, since only seven
iterations are needed to derive a converged solution for the [0/90/0] ply orientation.

5.2. Examples demonstrating advantages of Approach D

There were discovered only two benchmark problems exhibiting, on the contrary, the better convergence
characteristics of Approach D, namely, a cantilever cross-ply semi-cylindrical shell and a 90� rigid-body
rotation of one quarter of the circular ring.
Fig. 12. Pinched cross-ply hyperbolic shell. Shell of revolution with geometrical parameters (a1 = z 2 [0,L], a2 2 [0,p/2]): A1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2z2

A2
2

s
, A2 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lz2

r2

r
, k1 ¼ � lr2

A3
1A

3
2

, k2 ¼
1

A1A2

, l ¼ R2 � r2

L2
.

Table 6
Displacements at points A and C of cross-ply hyperbolic shell

Ply sequence Element NStep = 1 NStep = 5 NStep = 10

��vAy �vCy NIter ��vAy �vCy NIter ��vAy �vCy NIter

[0/90/0] TMS4RD Fail to converge Fail to converge 3.5168 2.5185 56
TMS4RH 3.5168 2.5185 7 3.5168 2.5185 16 3.5168 2.5185 27

[90/0/90] TMS4RD Fail to converge Fail to converge Fail to converge
TMS4RH Fail to converge 6.0577 2.7291 24 6.0577 2.7291 36
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Fig. 13. Displacements of pinched cross-ply hyperbolic shell for ply orientations: (a) [0/90/0] and (b) [90/0/90].
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5.2.1. Cantilever cross-ply semi-cylindrical shell under tip load

This problem has been used as a benchmark test for the non-linear behaviour of solid-shell elements in
Refs. [6,7]. The geometrical and material data of the three-layer semi-cylindrical shell are given in Fig. 14,
where Rin denotes the inner radius of the shell, subscripts L and T refer to the longitudinal and transverse
directions of the individual ply, and 0� and 90� refer to the axial and circumferential directions of the
cylinder.

Owing to symmetry of the problem, only half of the shell is discretized with the 16 · 16 mesh of TMS4R
elements. Table 7 and Fig. 15 present our results compared with those reported in Refs. [6,7] by using the
same mesh of the bilinear solid-shell elements. One may observe that the TMS4RD element performs
Fig. 14. Cantilever cross-ply semi-cylindrical shell under tip load. Ply thickness = 1, ply orientation = [90/0/90] and [0/90/0]. Shell of
revolution with geometrical parameters: A1 = 1, A2 = Rin, k1 = 0, k2 = 1/Rin, a1 2 [0,L], a2 2 [0,p/2].

Table 7
Transverse displacement under applied load f = 2.4 of cantilever cross-ply semi-cylindrical shell

Ply sequence Element NStep = 1 NStep = 5 NStep = 10

��v3 NIter ��v3 NIter ��v3 NIter

[0/90/0] TMS4RD 152.36 40 152.36 73 152.36 91
TMS4RH Fail to converge Fail to converge 152.36 64

[90/0/90] TMS4RD 74.120 19 74.120 38 74.120 54
TMS4RH Fail to converge 74.120 22 74.120 34
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excellently. So, the TMS4RD solution converges for the [0/90/0] ply orientation in 40 iterations while
TMS4RH and HS(TL) [7] solutions converge only in 64 and 68 iterations, correspondingly. Note that in
Ref. [7] 150 units of the displacement under an applied load was prescribed in 10 equal increments.

5.2.2. 90� rigid-body rotation of one quarter of circular ring

The isotropic ring depicted in Fig. 16 is undergone 90� rigid-body rotation around pointM belonging the
midline S. The geometrical and material properties of the problem are given in Fig. 16. The boundary
conditions were taken as follows
u1ðM�Þ ¼ �h=2; u2ðM�Þ ¼ 0; u3ðM�Þ ¼ �h=2
and
u1ðL�Þ ¼ �2R� h=2; u2ðL�Þ ¼ 0; u3ðL�Þ ¼ �h=2.
One quarter of the ring is modeled by regular meshes of TMS4R elements. Table 8 lists strains at the
central section (at a1 = pR/4) derived by using both elements developed. It is seen that the practically
strain-free state is achieved by using eight TMS4RD elements. At the same time TMS4RH elements never
lead to strain-free state at the central section of the ring. As we remember, the convergence tolerance was set
to be 10�4.
Fig. 16. 90� rigid-body rotation of one quarter of circular ring around point M .



Table 8
Strains at central section (at a1 = pR/4) of one quarter of circular ring subjected to 90� rigid-body rotation

Element Mesh E�
11 Eþ

11 E�
13 Eþ

13 E33 NIter

TMS4RD 2 · 1 1.22 · 10�1 1.16 · 10�1 5.34 · 10�2 5.34 · 10�2 �7.73 · 10�2 8
TMS4RH 2 · 1 1.22 · 10�1 1.16 · 10�1 5.34 · 10�2 5.34 · 10�2 �7.73 · 10�2 6
TMS4RD 4 · 1 1.81 · 10�2 �5.12 · 10�3 �8.63 · 10�3 �8.69 · 10�3 �5.86 · 10�5 13
TMS4RH 4 · 1 5.90 · 10�2 4.69 · 10�2 1.09 · 10�1 1.11 · 10�1 �1.05 · 10�1 22
TMS4RD 8 · 1 3.94 · 10�4 �3.35 · 10�4 6.76 · 10�6 6.76 · 10�6 �9.55 · 10�6 31
TMS4RH 8 · 1 Fail to converge
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6. Conclusions

The geometrically exact TM shell FE models have been developed for the analysis of multilayered shells
undergoing finite deformations. The FE formulation is based on the new non-linear strain–displacement
relationships, written in local curvilinear coordinates, which are objective, i.e., invariant under all large
rigid-body motions. The developed formulation has computational advantages compared to the conven-
tional isoparametric FE formulations because displacement vectors of the face surfaces are introduced
and resolved in the reference surface frame. An important observation is that our element stiffness matrices
require only direct substitutions, i.e., no inversion is needed when sides of the element coincide with the
lines of principal curvatures of the reference surface, and they are evaluated by using the analytical
integration.

Two approaches for solving the incremental non-linear equilibrium equations are discussed in detail. In
Approach D the incremental assumed strains and stress resultants are eliminated at the element level that
practically leads to the displacement FE formulation. An alternative Approach H, in which equilibrium
equations for incremental displacements and incremental assumed strains and stress resultants are solved
by the Newton–Raphson method simultaneously, allows using much larger load increments. It should
be mentioned that there were discovered two discriminating benchmark problems demonstrating, on the
contrary, the better convergence characteristics of Approach D. It is important that corresponding D
and H-element solutions (if they converge) yield exactly the same numerical results and all four-node
elements developed are usually insensitive to a number of loading steps.
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